Details on this package are located in Section 6.12.2, “Contents of Binutils.”
Copyright © 1999-2011 Gerard Beekmans
Copyright © 1999-2011, Gerard Beekmans
All rights reserved.
This book is licensed under a Creative Commons License.
Computer instructions may be extracted from the book under the MIT License.
Linux® is a registered trademark of Linus Torvalds.
My journey to learn and better understand Linux began over a decade ago, back in 1998. I had just installed my first Linux distribution and had quickly become intrigued with the whole concept and philosophy behind Linux.
There are always many ways to accomplish a single task. The same can be said about Linux distributions. A great many have existed over the years. Some still exist, some have morphed into something else, yet others have been relegated to our memories. They all do things differently to suit the needs of their target audience. Because so many different ways to accomplish the same end goal exist, I began to realize I no longer had to be limited by any one implementation. Prior to discovering Linux, we simply put up with issues in other Operating Systems as you had no choice. It was what it was, whether you liked it or not. With Linux, the concept of choice began to emerge. If you didn't like something, you were free, even encouraged, to change it.
I tried a number of distributions and could not decide on any one. They were great systems in their own right. It wasn't a matter of right and wrong anymore. It had become a matter of personal taste. With all that choice available, it became apparent that there would not be a single system that would be perfect for me. So I set out to create my own Linux system that would fully conform to my personal preferences.
To truly make it my own system, I resolved to compile everything from source code instead of using pre-compiled binary packages. This “perfect” Linux system would have the strengths of various systems without their perceived weaknesses. At first, the idea was rather daunting. I remained committed to the idea that such a system could be built.
After sorting through issues such as circular dependencies and compile-time errors, I finally built a custom-built Linux system. It was fully operational and perfectly usable like any of the other Linux systems out there at the time. But it was my own creation. It was very satisfying to have put together such a system myself. The only thing better would have been to create each piece of software myself. This was the next best thing.
As I shared my goals and experiences with other members of the Linux community, it became apparent that there was a sustained interest in these ideas. It quickly became plain that such custom-built Linux systems serve not only to meet user specific requirements, but also serve as an ideal learning opportunity for programmers and system administrators to enhance their (existing) Linux skills. Out of this broadened interest, the Linux From Scratch Project was born.
This Linux From Scratch book is the central core around that project. It provides the background and instructions necessary for you to design and build your own system. While this book provides a template that will result in a correctly working system, you are free to alter the instructions to suit yourself, which is, in part, an important part of this project. You remain in control; we just lend a helping hand to get you started on your own journey.
I sincerely hope you will have a great time working on your own Linux From Scratch system and enjoy the numerous benefits of having a system that is truly your own.
--
Gerard Beekmans
gerard AT linuxfromscratch D0T org
There are many reasons why you would want to read this book. One of the questions many people raise is, “why go through all the hassle of manually building a Linux system from scratch when you can just download and install an existing one?”
One important reason for this project's existence is to help you learn how a Linux system works from the inside out. Building an LFS system helps demonstrate what makes Linux tick, and how things work together and depend on each other. One of the best things that this learning experience can provide is the ability to customize a Linux system to suit your own unique needs.
Another key benefit of LFS is that it allows you to have more control over the system without relying on someone else's Linux implementation. With LFS, you are in the driver's seat and dictate every aspect of the system.
LFS allows you to create very compact Linux systems. When installing regular distributions, you are often forced to install a great many programs which are probably never used or understood. These programs waste resources. You may argue that with today's hard drive and CPUs, such resources are no longer a consideration. Sometimes, however, you are still constrained by size considerations if nothing else. Think about bootable CDs, USB sticks, and embedded systems. Those are areas where LFS can be beneficial.
Another advantage of a custom built Linux system is security. By compiling the entire system from source code, you are empowered to audit everything and apply all the security patches desired. It is no longer necessary to wait for somebody else to compile binary packages that fix a security hole. Unless you examine the patch and implement it yourself, you have no guarantee that the new binary package was built correctly and adequately fixes the problem.
The goal of Linux From Scratch is to build a complete and usable foundation-level system. If you do not wish to build your own Linux system from scratch, you may not entirely benefit from the information in this book.
There are too many other good reasons to build your own LFS system to list them all here. In the end, education is by far the most powerful of reasons. As you continue in your LFS experience, you will discover the power that information and knowledge truly bring.
The primary target architecture of LFS is the 32-bit Intel CPU. If you have not built an LFS system before, you should probably start with that target. The 32-bit architecture is the most widely supported Linux system and is most compatible with both open source and proprietary software.
On the other hand, the instructions in this book are known to work, with some modifications, with both Power PC and 64-bit AMD/Intel CPUs. To build a system that utilizes one of these CPUs, the main prerequisite, in addition to those on the next few pages, is an existing Linux system such as an earlier LFS installation, Ubuntu, Red Hat/Fedora, SuSE, or other distribution that targets the architecture that you have. Also note that a 32-bit distribution can be installed and used as a host system on a 64-bit AMD/Intel computer.
Some other facts about 64-bit systems need to be added here. When compared to a 32-bit system, the sizes of executable programs are slightly larger and the execution speeds are only slightly faster. For example, in a test build of LFS-6.5 on a Core2Duo CPU based system, the following statistics were measured:
Architecture Build Time Build Size
32-bit 198.5 minutes 648 MB
64-bit 190.6 minutes 709 MB
As you can see, the 64-bit build is only 4% faster and is 9% larger than the 32-bit build. The gain from going to a 64-bit system is relatively minimal. Of course, if you have more than 4GB of RAM or want to manipulate data that exceeds 4GB, the advantages of a 64-bit system are substantial.
The default 64-bit build that results from LFS is considered a "pure" 64-bit system. That is, it supports 64-bit executables only. Building a "multi-lib" system requires compiling many applications twice, once for a 32-bit system and once for a 64-bit system. This is not directly supported in LFS because it would interfere with the educational objective of providing the instructions needed for a straightforward base Linux system. You can refer to the Cross Linux From Scratch project for this advanced topic.
There is one last comment about 64-bit systems. There are some packages that cannot currently be built in a "pure" 64-bit system or require specialized build instructions. Generally, these packages have some embedded 32-bit specific assembly language instructions that fail when building on a 64-bit system. This includes some Xorg drivers from Beyond Linux From Scratch (BLFS). Many of these problems can be worked around, but may require some specialized procedures or patches.
The structure of LFS follows Linux standards as closely as possible. The primary standards are:
The Single UNIX Specification Version 3 (POSIX). Note: Free registration is required.
Linux Standard Base (LSB) Core Specification 4.0
The LSB has five separate standards: Core, C++, Desktop, Runtime Languages, and Printing. In addition to generic requirements there are also architecture specific requirements. LFS attempts to conform to the architectures discussed in the previous section.
Many people do not agree with the requirements of the LSB. The main purpose of defining it is to ensure that proprietary software will be able to be installed and run properly on a compliant system. Since LFS is source based, the user has complete control over what packages are desired and many choose not to install some packages that are specified by the LSB.
Creating a complete LFS system capable of passing the LSB certifications tests is possible, but not without many additional packages that are beyond the scope of LFS. Most of these additional packages have installation instructions in BLFS.
LSB Core: |
Bash, Binutils, Coreutils, Diffutils, File, Findutils, Gawk, Grep, Gzip, M4, Man-DB, Ncurses, Procps, Psmisc, Sed, Shadow, Tar, Util-linux, Zlib |
LSB C++: |
Gcc |
LSB Desktop: |
None |
LSB Runtime Languages: |
Perl |
LSB Printing: |
None |
LSB Multimeda: |
None |
LSB Core: |
Bc, Cpio, Ed, Fcrontab, PAM, Sendmail (or Postfix or Exim) |
LSB C++: |
None |
LSB Desktop: |
ATK, Cairo, Desktop-file-utils, Freetype, Fontconfig, Glib2, GTK+2, Icon-naming-utils, Libjpeg, Libpng, Libxml2, MesaLib, Pango, Qt3, Qt4, Xorg |
LSB Runtime Languages: |
Python |
LSB Printing: |
CUPS |
LSB Multimeda: |
Alsa Libraries, NSPR, NSS, OpenSSL, Java |
As stated earlier, the goal of LFS is to build a complete and usable foundation-level system. This includes all packages needed to replicate itself while providing a relatively minimal base from which to customize a more complete system based on the choices of the user. This does not mean that LFS is the smallest system possible. Several important packages are included that are not strictly required. The lists below document the rationale for each package in the book.
Autoconf
This package contains programs for producing shell scripts that can automatically configure source code from a developer's template. It is often needed to rebuild a package after updates to the build procedures.
Automake
This package contains programs for generating Make files from a template. It is often needed to rebuild a package after updates to the build procedures.
Bash
This package satisfies an LSB core requirement to provide a Bourne Shell interface to the system. It was chosen over other shell packages because of its common usage and extensive capabilities beyond basic shell functions.
Binutils
This package contains a linker, an assembler, and other tools for handling object files. The programs in this package are needed to compile most of the packages in an LFS system and beyond.
Bison
This package contains the GNU version of yacc (Yet Another Compiler Compiler) needed to build several other LFS programs.
Bzip2
This package contains programs for compressing and decompressing files. It is required to decompress many LFS packages.
Coreutils
This package contains a number of essential programs for viewing and manipulating files and directories. These programs are needed for command line file management, and are necessary for the installation procedures of every package in LFS.
DejaGNU
This package contains a framework for testing other programs. It is only installed in the temporary toolchain.
Diffutils
This package contains programs that show the differences between files or directories. These programs can be used to create patches, and are also used in many packages' build procedures.
Expect
This package contains a program for carrying out scripted dialogues with other interactive programs. It is commonly used for testing other packages. It is only installed in the temporary toolchain.
E2fsprogs
This package contains the utilities for handling the ext2, ext3 and ext4 file systems. These are the most common and thoroughly tested file systems that Linux supports.
File
This package contains a utility for determining the type of a given file or files. A few packages need it to build.
Findutils
This package contains programs to find files in a file system. It is used in many packages' build scripts.
Flex
This package contains a utility for generating programs that recognize patterns in text. It is the GNU version of the lex (lexical analyzer) program. It is required to build several LFS packages.
Gawk
This package contains programs for manipulating text files. It is the GNU version of awk (Aho-Weinberg-Kernighan). It is used in many other packages' build scripts.
Gcc
This package is the Gnu Compiler Collection. It contains the C and C++ compilers as well as several others not built by LFS.
GDBM
This package contains the GNU Database Manager library. It is used by one other LFS package, Man-DB.
Gettext
This package contains utilities and libraries for internationalization and localization of numerous packages.
Glibc
This package contains the main C library. Linux programs would not run without it.
GMP
This package contains math libraries that provide useful functions for arbitrary precision arithmetic. It is required to build Gcc.
Grep
This package contains programs for searching through files. These programs are used by most packages' build scripts.
Groff
This package contains programs for processing and formatting text. One important function of these programs is to format man pages.
GRUB
This package is the Grand Unified Boot Loader. It is one of several boot loaders available, but is the most flexible.
Gzip
This package contains programs for compressing and decompressing files. It is needed to decompress many packages in LFS and beyond.
Iana-etc
This package provides data for network services and protocols. It is needed to enable proper networking capabilities.
Inetutils
This package contains programs for basic network administration.
IProute2
This package contains programs for basic and advanced IPv4 and IPv6 networking. It was chosen over the other common network tools package (net-tools) for its IPv6 capabilities.
Kbd
This package contains key-table files, keyboard utilities for non-US keyboards, and a number of console fonts.
Less
This package contains a very nice text file viewer that allows scrolling up or down when viewing a file. It is also used by Man-DB for viewing manpages.
Libtool
This package contains the GNU generic library support script. It wraps the complexity of using shared libraries in a consistent, portable interface. It is needed by the test suites in other LFS packages.
Linux Kernel
This package is the Operating System. It is the Linux in the GNU/Linux environment.
M4
This package contains a general text macro processor useful as a build tool for other programs.
Make
This package contains a program for directing the building of packages. It is required by almost every package in LFS.
Man-DB
This package contains programs for finding and viewing man pages. It was chosen instead of the man package due to superior internationalization capabilities. It supplies the man program.
Man-pages
This package contains the actual contents of the basic Linux man pages.
Module-Init-Tools
This package contains programs needed to administer Linux kernel modules.
MPC
This package contains functions for the arithmetic of complex numbers. It is required by Gcc.
MPFR
This package contains functions for multiple precision arithmetic. It is required by Gcc.
Ncurses
This package contains libraries for terminal-independent handling of character screens. It is often used to provide cursor control for a menuing system. It is needed by a number of packages in LFS.
Patch
This package contains a program for modifying or creating files by applying a patch file typically created by the diff program. It is needed by the build procedure for several LFS packages.
Perl
This package is an interpreter for the runtime language PERL. It is needed for the installation and test suites of several LFS packages.
Pkg-config
This package contains a tool for passing the include path and/or library paths to build tools during the configure and make processes. It is needed by many LFS packages.
Procps
This package contains programs for monitoring processes. These programs are useful for system administration, and are also used by the LFS Bootscripts.
Psmisc
This package contains programs for displaying information about running processes. These programs are useful for system administration.
Readline
This package is a set of libraries that offers command-line editing and history capabilities. It is used by Bash.
Sed
This package allows editing of text without opening it in a text editor. It is also needed by most LFS packages' configure scripts.
Shadow
This package contains programs for handling passwords in a secure way.
Sysklogd
This package contains programs for logging system messages, such as those given by the kernel or daemon processes when unusual events occur.
Sysvinit
This package provides the init program, which is the parent of all other processes on the Linux system.
Tar
This package provides archiving and extraction capabilities of virtually all packages used in LFS.
Tcl
This package contains the Tool Command Language used in many test suites in LFS packages. It is only installed in the temporary toolchain.
Texinfo
This package contains programs for reading, writing, and converting info pages. It is used in the installation procedures of many LFS packages.
Udev
This package contains programs for dynamic creation of device nodes. It is an alternative to creating thousands of static devices in the /dev directory.
Util-linux
This package contains miscellaneous utility programs. Among them are utilities for handling file systems, consoles, partitions, and messages.
Vim
This package contains an editor. It was chosen because of its compatibility with the classic vi editor and its huge number of powerful capabilities. An editor is a very personal choice for many users and any other editor could be substituted if desired.
XZ Utils
This package contains programs for compressing and decompressing files. It provides the highest compression generally available and the useful for decompressing packages XZ or LZMA format.
Zlib
This package contains compression and decompression routines used by some programs.
Building an LFS system is not a simple task. It requires a certain level of existing knowledge of Unix system administration in order to resolve problems and correctly execute the commands listed. In particular, as an absolute minimum, you should already have the ability to use the command line (shell) to copy or move files and directories, list directory and file contents, and change the current directory. It is also expected that you have a reasonable knowledge of using and installing Linux software.
Because the LFS book assumes at least this basic level of skill, the various LFS support forums are unlikely to be able to provide you with much assistance in these areas. You will find that your questions regarding such basic knowledge will likely go unanswered or you will simply be referred to the LFS essential pre-reading list.
Before building an LFS system, we recommend reading the following HOWTOs:
Software-Building-HOWTO http://www.tldp.org/HOWTO/Software-Building-HOWTO.html
This is a comprehensive guide to building and installing “generic” Unix software packages under Linux. Although it was written some time ago, it still provides a good summary of the basic techniques needed to build and install software.
The Linux Users' Guide http://www.linuxhq.com/guides/LUG/guide.html
This guide covers the usage of assorted Linux software. This reference is also fairly old, but still valid.
The Essential Pre-Reading Hint http://www.linuxfromscratch.org/hints/downloads/files/essential_prereading.txt
This is an LFS Hint written specifically for users new to Linux. It includes a list of links to excellent sources of information on a wide range of topics. Anyone attempting to install LFS should have an understanding of many of the topics in this hint.
Your host system should have the following software with the minimum versions indicated. This should not be an issue for most modern Linux distributions. Also note that many distributions will place software headers into separate packages, often in the form of “<package-name>-devel” or “<package-name>-dev”. Be sure to install those if your distribution provides them.
Earlier versions of the listed software packages may work, but has not been tested.
Bash-3.2 (/bin/sh should be a symbolic or hard link to bash)
Binutils-2.17 (Versions greater than 2.21 are not recommended as they have not been tested)
Bison-2.3 (/usr/bin/yacc should be a link to bison or small script that executes bison)
Bzip2-1.0.4
Coreutils-6.9
Diffutils-2.8.1
Findutils-4.2.31
Gawk-3.1.5 (/usr/bin/awk should be a link to gawk)
Gcc-4.1.2 (Versions greater than 4.5.2 are not recommended as they have not been tested)
Glibc-2.5.1 (Versions greater than 2.13 are not recommended as they have not been tested)
Grep-2.5.1a
Gzip-1.3.12
Linux Kernel-2.6.22.5 (having been compiled with GCC-4.1.2 or greater)
The reason for the kernel version requirement is that we specify that version when building glibc in Chapter 6 at the recommendation of the developers.
If the host kernel is either earlier than 2.6.22.5, or it was not compiled using a GCC-4.1.2 (or later) compiler, you will need to replace the kernel with one adhering to the specifications. There are two ways you can go about this. First, see if your Linux vendor provides a 2.6.22.5 or later kernel package. If so, you may wish to install it. If your vendor doesn't offer an acceptable kernel package, or you would prefer not to install it, you can compile a kernel yourself. Instructions for compiling the kernel and configuring the boot loader (assuming the host uses GRUB) are located in Chapter 8.
M4-1.4.10
Make-3.81
Patch-2.5.4
Perl-5.8.8
Sed-4.1.5
Tar-1.18
Texinfo-4.9
Note that the symlinks mentioned above are required to build an LFS system using the instructions contained within this book. Symlinks that point to other software (such as dash, mawk, etc.) may work, but are not tested or supported by the LFS development team, and may require either deviation from the instructions or additional patches to some packages.
To see whether your host system has all the appropriate versions, and the ability to compile programs, run the following:
cat > version-check.sh << "EOF"
#!/bin/bash
export LC_ALL=C
# Simple script to list version numbers of critical development tools
bash --version | head -n1 | cut -d" " -f2-4
echo "/bin/sh -> `readlink -f /bin/sh`"
echo -n "Binutils: "; ld --version | head -n1 | cut -d" " -f3-
bison --version | head -n1
if [ -e /usr/bin/yacc ];
then echo "/usr/bin/yacc -> `readlink -f /usr/bin/yacc`";
else echo "yacc not found"; fi
bzip2 --version 2>&1 < /dev/null | head -n1 | cut -d" " -f1,6-
echo -n "Coreutils: "; chown --version | head -n1 | cut -d")" -f2
diff --version | head -n1
find --version | head -n1
gawk --version | head -n1
if [ -e /usr/bin/awk ];
then echo "/usr/bin/awk -> `readlink -f /usr/bin/awk`";
else echo "awk not found"; fi
gcc --version | head -n1
/lib/libc.so.6 | head -n1 | cut -d"," -f1
grep --version | head -n1
gzip --version | head -n1
cat /proc/version
m4 --version | head -n1
make --version | head -n1
patch --version | head -n1
echo Perl `perl -V:version`
sed --version | head -n1
tar --version | head -n1
echo "Texinfo: `makeinfo --version | head -n1`"
echo 'main(){}' > dummy.c && gcc -o dummy dummy.c
if [ -x dummy ]; then echo "Compilation OK";
else echo "Compilation failed"; fi
rm -f dummy.c dummy
EOF
bash version-check.sh
To make things easier to follow, there are a few typographical conventions used throughout this book. This section contains some examples of the typographical format found throughout Linux From Scratch.
./configure --prefix=/usr
This form of text is designed to be typed exactly as seen unless otherwise noted in the surrounding text. It is also used in the explanation sections to identify which of the commands is being referenced.
In some cases, a logical line is extended to two or more physical lines with a backslash at the end of the line.
CC="gcc -B/usr/bin/" ../binutils-2.18/configure \ --prefix=/tools --disable-nls --disable-werror
Note that the backslash must be followed by an immediate return. Other whitespace characters like spaces or tab characters will create incorrect results.
install-info: unknown option '--dir-file=/mnt/lfs/usr/info/dir'
This form of text (fixed-width text) shows screen output, usually
as the result of commands issued. This format is also used to
show filenames, such as /etc/ld.so.conf
.
Emphasis
This form of text is used for several purposes in the book. Its main purpose is to emphasize important points or items.
http://www.linuxfromscratch.org/
This format is used for hyperlinks both within the LFS community and to external pages. It includes HOWTOs, download locations, and websites.
cat > $LFS/etc/group << "EOF"
root:x:0:
bin:x:1:
......
EOF
This format is used when creating configuration files. The first
command tells the system to create the file $LFS/etc/group
from whatever is typed on the
following lines until the sequence End Of File (EOF) is
encountered. Therefore, this entire section is generally typed as
seen.
<REPLACED TEXT>
This format is used to encapsulate text that is not to be typed as seen or for copy-and-paste operations.
[OPTIONAL TEXT]
This format is used to encapsulate text that is optional.
passwd(5)
This format is used to refer to a specific manual (man) page. The
number inside parentheses indicates a specific section inside the
manuals. For example, passwd has two man pages. Per
LFS installation instructions, those two man pages will be
located at /usr/share/man/man1/passwd.1
and /usr/share/man/man5/passwd.5
. When the book
uses passwd(5)
it is specifically
referring to /usr/share/man/man5/passwd.5
. man passwd will print the first
man page it finds that matches “passwd”, which will be /usr/share/man/man1/passwd.1
. For this example,
you will need to run man 5
passwd in order to read the specific page being
referred to. It should be noted that most man pages do not have
duplicate page names in different sections. Therefore,
man <program
name>
is generally sufficient.
This book is divided into the following parts.
Part I explains a few important notes on how to proceed with the LFS installation. This section also provides meta-information about the book.
Part II describes how to prepare for the building process—making a partition, downloading the packages, and compiling temporary tools.
Part III guides the reader through the building of the LFS system—compiling and installing all the packages one by one, setting up the boot scripts, and installing the kernel. The resulting Linux system is the foundation on which other software can be built to expand the system as desired. At the end of this book, there is an easy to use reference listing all of the programs, libraries, and important files that have been installed.
The software used to create an LFS system is constantly being updated and enhanced. Security warnings and bug fixes may become available after the LFS book has been released. To check whether the package versions or instructions in this release of LFS need any modifications to accommodate security vulnerabilities or other bug fixes, please visit http://www.linuxfromscratch.org/lfs/errata/6.8/ before proceeding with your build. You should note any changes shown and apply them to the relevant section of the book as you progress with building the LFS system.
The LFS system will be built by using an already installed Linux distribution (such as Debian, Mandriva, Red Hat, or SUSE). This existing Linux system (the host) will be used as a starting point to provide necessary programs, including a compiler, linker, and shell, to build the new system. Select the “development” option during the distribution installation to be able to access these tools.
As an alternative to installing a separate distribution onto your machine, you may wish to use the Linux From Scratch LiveCD or a LiveCD from a commercial distribution. The LFS LiveCD works well as a host system, providing all the tools you need to successfully follow the instructions in this book. The LiveCD version is behind the current book, but is still useful as a host for building the current book. The “-nosrc” or “-min” editions of the LiveCD are the most appropriate for building a current LFS system. For more information about the LFS LiveCD or to download a copy, visit http://www.linuxfromscratch.org/livecd/.
The LFS LiveCD might not work on newer hardware configurations, failing to boot or failing to detect some devices such as some SATA hard drives.
Chapter 2 of this book describes how to create a new Linux native partition and file system. This is the place where the new LFS system will be compiled and installed. Chapter 3 explains which packages and patches need to be downloaded to build an LFS system and how to store them on the new file system. Chapter 4 discusses the setup of an appropriate working environment. Please read Chapter 4 carefully as it explains several important issues you need be aware of before beginning to work your way through Chapter 5 and beyond.
Chapter 5 explains the installation of a number of packages that will form the basic development suite (or toolchain) which is used to build the actual system in Chapter 6. Some of these packages are needed to resolve circular dependencies—for example, to compile a compiler, you need a compiler.
Chapter 5 also shows you how to build a first pass of the toolchain, including Binutils and GCC (first pass basically means these two core packages will be reinstalled). The next step is to build Glibc, the C library. Glibc will be compiled by the toolchain programs built in the first pass. Then, a second pass of the toolchain will be built. This time, the toolchain will be dynamically linked against the newly built Glibc. The remaining Chapter 5 packages are built using this second pass toolchain. When this is done, the LFS installation process will no longer depend on the host distribution, with the exception of the running kernel.
This effort to isolate the new system from the host distribution may seem excessive. A full technical explanation as to why this is done is provided in Section 5.2, “Toolchain Technical Notes”.
In Chapter 6, the full LFS system is built. The chroot (change root) program is used to enter a virtual environment and start a new shell whose root directory will be set to the LFS partition. This is very similar to rebooting and instructing the kernel to mount the LFS partition as the root partition. The system does not actually reboot, but instead chroot's because creating a bootable system requires additional work which is not necessary just yet. The major advantage is that “chrooting” allows you to continue using the host system while LFS is being built. While waiting for package compilations to complete, you can continue using your computer as normal.
To finish the installation, the LFS-Bootscripts are set up in Chapter 7, and the kernel and boot loader are set up in Chapter 8. Chapter 9 contains information on continuing the LFS experience beyond this book. After the steps in this book have been implemented, the computer will be ready to reboot into the new LFS system.
This is the process in a nutshell. Detailed information on each step is discussed in the following chapters and package descriptions. Items that may seem complicated will be clarified, and everything will fall into place as you embark on the LFS adventure.
Below is a list of package updates made since the previous release of the book.
Upgraded to:
Autoconf 2.68
Bash 4.2
Binutils 2.21
Bzip2 1.0.6
Coreutils 8.10
E2fsprogs 1.41.14
Expect 5.45
File 5.05
GCC 4.5.2
Glibc 2.13
Grep 2.7
Groff 1.21
IPRoute2 2.6.37
Libtool 2.4
Linux 2.6.37
M4 1.4.15
Man-DB 2.5.9
Man-pages 3.32
Perl 5.12.3
Psmisc 22.13
Readline 6.2
Shadow 4.1.4.3
Tar 1.25
TCL 8.5.9
Udev 166
Added:
bzip2-1.0.6-install_docs-1.patch
coreutils-8.10-i18n-1.patch
coreutils-8.10-uname-1.patch
gcc-4.5.2-startfiles_fix-1.patch
glibc-2.13-gcc_fix-1.patch
perl-5.12.3-libc-1.patch
procps-3.2.8-fix_HZ_errors-1.patch
xz-5.0.1
util-linux-2.19
Removed:
bash-4.1-fixes-2.patch
bzip2-1.0.5-install_docs-1.patch
bzip2-1.0.5-version_fixes-1.patch
coreutils-8.5-i18n-1.patch
coreutils-8.5-uname-2.patch
expect-5.44.1.15-no_tk-1.patch
gcc-4.5.1-startfiles_fix-1.patch
glibc-2.12.1-gcc_fix-1.patch
glibc-2.12.1-makefile_fix-1.patch
man-db-2.5.7-fix_man_assertion-1.patch
perl-5.12.1-libc-1.patch
tar-1.23-overflow_fix-1.patch
util-linux-ng-2.18
This is version 6.8 of the Linux From Scratch book, dated March 4, 2011. If this book is more than six months old, a newer and better version is probably already available. To find out, please check one of the mirrors via http://www.linuxfromscratch.org/mirrors.html.
Below is a list of changes made since the previous release of the book.
Changelog Entries:
2011-03-04
[bdubbs] Release LFS 6.8.
2011-02-18
[bdubbs] Fix several urls in Chapter 3. Thanks to splotz90 for the patch.
[bryan] Fix the sed in the CD-ROM symlinks section, to sync with upstream changes to the file being modified.
2011-02-16
2011-02-10
2011-02-04
2011-01-27
[bdubbs] Add a sed that modifies incorrect defines in glibc. Thanks to Bryan Kadzban for identifying the proper fix. Fixes #2820.
2011-01-25
[bdubbs] Add a note about optionally building popt before pkg-config. Fixes #2781.
2011-01-24
[bdubbs] Move chroot man page to man8. Fixes #2782.
2011-01-23
[matthew] Ignore failing tests in Man-DB as they're only due to a change in Groff-1.21's warning output. Fixes #2823.
[matthew] Change password hashing from MD5 to SHA-512. Fixes #2814.
[matthew] Upgrade to File-5.05. Fixes #2821.
[matthew] Upgrade to IPRoute2-2.6.37. Fixes #2817.
[matthew] Upgrade to Coreutils-8.9. Fixes #2815.
2011-01-10
2011-01-04
[bdubbs] Move XZ-Utils to before Man-DB. Tweak install instructions.
2011-01-02
[bdubbs] Added XZ-Utils as a new compression utility package for independent use or with tar. Fixes #2619.
2010-12-29
[ken] Allow shadow to install its korean and chinese man-pages, since man-db can now format them. Thanks to William Immendorf for the report.
2010-12-28
2010-12-19
2010-12-14
[matthew] Upgrade to Glibc-2.12.2. Fixes #2804.
2010-12-13
2010-11-18
2010-11-10
[matthew] Add security fixes for Glibc. Fixes #2790.
[matthew] Upgrade to Man-Pages-3.30. Fixes #2788.
[matthew] Mention Inetutils' testsuite, and also install its HTML documentation. Fixes #2784 and #2785
[matthew] Upgrade to Tar-1.25, and also install its HTML documentation. Fixes #2777 and #2786.
2010-10-27
[bdubbs] Add an example on how to use wget-list. Fixes #2778.
2010-10-26
[bdubbs] Clarify text in Chapter 5 GCC Pass 1 concerning supporting packages.
2010-10-24
2010-10-18
2010-09-22
[matthew] Following r9370, fix the Autoconf underquoting bug in Autoconf itself, rather than just the one affected LFS package, Pkg-config.
[matthew] Upgrade to Linux-2.6.35.5. Fixes #2761.
[matthew] Upgrade to Grep-2.7. Fixes #2760.
[matthew] Upgrade to Bzip2-1.0.6. Fixes #2759.
[matthew] Add patch to fix "Unknown HZ value" error in some procps tools. Thanks to DJ Lucas for the report and patch. Fixes #2758.
[matthew] Upgrade to Tcl-8.5.9. Fixes #2753.
[matthew] Upgrade to Perl-5.12.2. Fixes #2752.
[matthew] Upgrade to Psmisc-22.13. Fixes #2751.
[matthew] Upgrade to Man-Pages-3.27. Fixes #2750.
[matthew] Upgrade to Udev-162. Fixes #2747.
[matthew] Upgrade to M4-1.4.15. Fixes #2744.
2010-09-18
[bdubbs] - LFS-6.7 released.
If during the building of the LFS system you encounter any errors, have any questions, or think there is a typo in the book, please start by consulting the Frequently Asked Questions (FAQ) that is located at http://www.linuxfromscratch.org/faq/.
The linuxfromscratch.org
server
hosts a number of mailing lists used for the development of
the LFS project. These lists include the main development and
support lists, among others. If the FAQ does not solve the
problem you are having, the next step would be to search the
mailing lists at http://www.linuxfromscratch.org/search.html.
For information on the different lists, how to subscribe, archive locations, and additional information, visit http://www.linuxfromscratch.org/mail.html.
Several members of the LFS community offer assistance on our
community Internet Relay Chat (IRC) network. Before using
this support, please make sure that your question is not
already answered in the LFS FAQ or the mailing list archives.
You can find the IRC network at irc.linuxfromscratch.org
. The support channel is
named #LFS-support.
The LFS project has a number of world-wide mirrors to make accessing the website and downloading the required packages more convenient. Please visit the LFS website at http://www.linuxfromscratch.org/mirrors.html for a list of current mirrors.
If an issue or a question is encountered while working through this book, please check the FAQ page at http://www.linuxfromscratch.org/faq/#generalfaq. Questions are often already answered there. If your question is not answered on this page, try to find the source of the problem. The following hint will give you some guidance for troubleshooting: http://www.linuxfromscratch.org/hints/downloads/files/errors.txt.
If you cannot find your problem listed in the FAQ, search the mailing lists at http://www.linuxfromscratch.org/search.html.
We also have a wonderful LFS community that is willing to offer assistance through the mailing lists and IRC (see the Section 1.4, “Resources” section of this book). However, we get several support questions every day and many of them can be easily answered by going to the FAQ and by searching the mailing lists first. So, for us to offer the best assistance possible, you need to do some research on your own first. That allows us to focus on the more unusual support needs. If your searches do not produce a solution, please include all relevant information (mentioned below) in your request for help.
Apart from a brief explanation of the problem being experienced, the essential things to include in any request for help are:
The version of the book being used (in this case 6.8)
The host distribution and version being used to create LFS
The output from the Section vii, “Host System Requirements”
The package or section the problem was encountered in
The exact error message or symptom being received
Note whether you have deviated from the book at all
Deviating from this book does not mean that we will not help you. After all, LFS is about personal preference. Being upfront about any changes to the established procedure helps us evaluate and determine possible causes of your problem.
If something goes wrong while running the configure script, review
the config.log
file. This file
may contain errors encountered during configure which were not
printed to the screen. Include the relevant lines if you need to ask
for help.
Both the screen output and the contents of various files are useful in determining the cause of compilation problems. The screen output from the configure script and the make run can be helpful. It is not necessary to include the entire output, but do include enough of the relevant information. Below is an example of the type of information to include from the screen output from make:
gcc -DALIASPATH=\"/mnt/lfs/usr/share/locale:.\"
-DLOCALEDIR=\"/mnt/lfs/usr/share/locale\"
-DLIBDIR=\"/mnt/lfs/usr/lib\"
-DINCLUDEDIR=\"/mnt/lfs/usr/include\" -DHAVE_CONFIG_H -I. -I.
-g -O2 -c getopt1.c
gcc -g -O2 -static -o make ar.o arscan.o commands.o dir.o
expand.o file.o function.o getopt.o implicit.o job.o main.o
misc.o read.o remake.o rule.o signame.o variable.o vpath.o
default.o remote-stub.o version.o opt1.o
-lutil job.o: In function `load_too_high':
/lfs/tmp/make-3.79.1/job.c:1565: undefined reference
to `getloadavg'
collect2: ld returned 1 exit status
make[2]: *** [make] Error 1
make[2]: Leaving directory `/lfs/tmp/make-3.79.1'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/lfs/tmp/make-3.79.1'
make: *** [all-recursive-am] Error 2
In this case, many people would just include the bottom section:
make [2]: *** [make] Error 1
This is not enough information to properly diagnose the problem because it only notes that something went wrong, not what went wrong. The entire section, as in the example above, is what should be saved because it includes the command that was executed and the associated error message(s).
An excellent article about asking for help on the Internet is available online at http://catb.org/~esr/faqs/smart-questions.html. Read and follow the hints in this document to increase the likelihood of getting the help you need.
In this chapter, the partition which will host the LFS system is prepared. We will create the partition itself, create a file system on it, and mount it.
Like most other operating systems, LFS is usually installed on a dedicated partition. The recommended approach to building an LFS system is to use an available empty partition or, if you have enough unpartitioned space, to create one.
A minimal system requires a partition of around 1.3 gigabytes (GB). This is enough to store all the source tarballs and compile the packages. However, if the LFS system is intended to be the primary Linux system, additional software will probably be installed which will require additional space (2-3 GB). The LFS system itself will not take up this much room. A large portion of this requirement is to provide sufficient free temporary storage. Compiling packages can require a lot of disk space which will be reclaimed after the package is installed.
Because there is not always enough Random Access Memory (RAM)
available for compilation processes, it is a good idea to use a
small disk partition as swap
space. This is used by the kernel to store seldom-used data and
leave more memory available for active processes. The
swap
partition for an LFS
system can be the same as the one used by the host system, in
which case it is not necessary to create another one.
Start a disk partitioning program such as cfdisk or fdisk with a command line
option naming the hard disk on which the new partition will be
created—for example /dev/hda
for the primary Integrated Drive
Electronics (IDE) disk. Create a Linux native partition and a
swap
partition, if needed.
Please refer to cfdisk(8)
or
fdisk(8)
if you do not yet know
how to use the programs.
Remember the designation of the new partition (e.g.,
hda5
). This book will refer to
this as the LFS partition. Also remember the designation of the
swap
partition. These names
will be needed later for the /etc/fstab
file.
Requests for advice on system partitioning are often posted on the LFS mailing lists. This is a highly subjective topic. The default for most distributions is to use the entire drive with the exception of one small swap partition. This is not optimal for LFS for several reasons. It reduces flexibility, makes sharing of data across multiple distributions or LFS builds more difficult, makes backups more time consuming, and can waste disk space through inefficient allocation of file system structures.
A root LFS partition (not to be confused with the
/root
directory) of ten
gigabytes is a good compromise for most systems. It
provides enough space to build LFS and most of BLFS, but is
small enough so that multiple partitions can be easily
created for experimentation.
Most distributions automatically create a swap partition. Generally the recommended size of the swap partition is about twice the amount of physical RAM, however this is rarely needed. If disk space is limited, hold the swap partition to two gigabytes and monitor the amount of disk swapping.
Swapping is never good. Generally you can tell if a system is swapping by just listening to disk activity and observing how the system reacts to commands. The first reaction to swapping should be to check for an unreasonable command such as trying to edit a five gigabyte file. If swapping becomes a normal occurance, the best solution is to purchase more RAM for your system.
There are several other partitions that are not required, but should be considered when designing a disk layout. The following list is not comprehensive, but is meant as a guide.
/boot – Highly recommended. Use this partition to store kernels and other booting information. To minimize potential boot problems with larger disks, make this the first physical partition on your first disk drive. A partition size of 100 megabytes is quite adequate.
/home – Highly recommended. Share your home directory and user customization across multiple distributions or LFS builds. The size is generally fairly large and depends on available disk space.
/usr – A separate /usr partition is generally used if providing a server for a thin client or diskless workstation. It is normally not needed for LFS. A size of five gigabytes will handle most installations.
/opt – This directory is most useful for BLFS where multiple installations of large packages like Gnome or KDE can be installed without embedding the files in the /usr hierarchy. If used, five to ten gigabytes is generally adequate.
/tmp – A separate /tmp directory is rare, but useful if configuring a thin client. This partition, if used, will usually not need to exceed a couple of gigabytes.
/usr/src – This partition is very useful for providing a location to store BLFS source files and share them across LFS builds. It can also be used as a location for building BLFS packages. A reasonably large partition of 30-50 gigabytes allows plenty of room.
Any separate partition that you want automatically mounted
upon boot needs to be specified in the /etc/fstab
. Details about how to specify
partitions will be discussed in Section 8.2,
“Creating the /etc/fstab File”.
Now that a blank partition has been set up, the file system can
be created. The most widely-used system in the Linux world is
the second extended file system (ext2
), but with newer high-capacity hard
disks, journaling file systems are becoming increasingly
popular. The third extended filesystem (ext3
) is a widely used enhancement to
ext2
, which adds journaling
capabilities and is compatible with the E2fsprogs utilities. We
will create an ext3
file
system. Instructions for creating other file systems can be
found at
http://www.linuxfromscratch.org/blfs/view/svn/postlfs/filesystems.html.
To create an ext3
file system
on the LFS partition, run the following:
mke2fs -jv /dev/<xxx>
Replace <xxx>
with the name of the LFS partition (hda5
in our previous example).
Some host distributions use custom features in their filesystem creation tools (E2fsprogs). This can cause problems when booting into your new LFS in Chapter 9, as those features will not be supported by the LFS-installed E2fsprogs; you will get an error similar to “unsupported filesystem features, upgrade your e2fsprogs”. To check if your host system uses custom enhancements, run the following command:
debugfs -R feature /dev/<xxx>
If the output contains features other than has_journal
, ext_attr
, resize_inode
, dir_index
, filetype
, sparse_super
, large_file
or needs_recovery
, then your host system may
have custom enhancements. In that case, to avoid later
problems, you should compile the stock E2fsprogs package and
use the resulting binaries to re-create the filesystem on
your LFS partition:
cd /tmp
tar -xzvf /path/to/sources/e2fsprogs-1.41.14.tar.gz
cd e2fsprogs-1.41.14
mkdir -v build
cd build
../configure
make #note that we intentionally don't 'make install' here!
./misc/mke2fs -jv /dev/<xxx>
cd /tmp
rm -rfv e2fsprogs-1.41.14
If you are using an existing swap
partition, there is no need to format
it. If a new swap
partition was
created, it will need to be initialized with this command:
mkswap /dev/<yyy>
Replace <yyy>
with the name of the swap
partition.
Now that a file system has been created, the partition needs to
be made accessible. In order to do this, the partition needs to
be mounted at a chosen mount point. For the purposes of this
book, it is assumed that the file system is mounted under
/mnt/lfs
, but the directory
choice is up to you.
Choose a mount point and assign it to the LFS
environment variable by running:
export LFS=/mnt/lfs
Next, create the mount point and mount the LFS file system by running:
mkdir -pv $LFS
mount -v -t ext3 /dev/<xxx>
$LFS
Replace <xxx>
with the designation of the LFS partition.
If using multiple partitions for LFS (e.g., one for
/
and another for /usr
), mount them using:
mkdir -pv $LFS mount -v -t ext3 /dev/<xxx>
$LFS mkdir -v $LFS/usr mount -v -t ext3 /dev/<yyy>
$LFS/usr
Replace <xxx>
and <yyy>
with
the appropriate partition names.
Ensure that this new partition is not mounted with permissions
that are too restrictive (such as the nosuid
, nodev
, or
noatime
options). Run the
mount command
without any parameters to see what options are set for the
mounted LFS partition. If nosuid
,
nodev
, and/or noatime
are set, the partition will need to be
remounted.
If you are using a swap
partition, ensure that it is enabled using the swapon command:
/sbin/swapon -v /dev/<zzz>
Replace <zzz>
with the name of the swap
partition.
Now that there is an established place to work, it is time to download the packages.
This chapter includes a list of packages that need to be downloaded in order to build a basic Linux system. The listed version numbers correspond to versions of the software that are known to work, and this book is based on their use. We highly recommend against using newer versions because the build commands for one version may not work with a newer version. The newest package versions may also have problems that require work-arounds. These work-arounds will be developed and stabilized in the development version of the book.
Download locations may not always be accessible. If a download location has changed since this book was published, Google (http://www.google.com/) provides a useful search engine for most packages. If this search is unsuccessful, try one of the alternative means of downloading discussed at http://www.linuxfromscratch.org/lfs/packages.html#packages.
Downloaded packages and patches will need to be stored
somewhere that is conveniently available throughout the entire
build. A working directory is also required to unpack the
sources and build them. $LFS/sources
can be used both as the place to
store the tarballs and patches and as a working directory. By
using this directory, the required elements will be located on
the LFS partition and will be available during all stages of
the building process.
To create this directory, execute the following command, as
user root
, before starting the
download session:
mkdir -v $LFS/sources
Make this directory writable and sticky. “Sticky” means that even if multiple users have write permission on a directory, only the owner of a file can delete the file within a sticky directory. The following command will enable the write and sticky modes:
chmod -v a+wt $LFS/sources
An easy way to download all of the packages and patches is by using wget-list as an input to wget. For example:
wget -i wget-list -P $LFS/sources
Download or otherwise obtain the following packages:
Home page: http://www.gnu.org/software/autoconf/
Download: http://ftp.gnu.org/gnu/autoconf/autoconf-2.68.tar.bz2
MD5 sum: 864d785215aa60d627c91fcb21b05b07
Home page: http://www.gnu.org/software/automake/
Download: http://ftp.gnu.org/gnu/automake/automake-1.11.1.tar.bz2
MD5 sum: c2972c4d9b3e29c03d5f2af86249876f
Home page: http://www.gnu.org/software/bash/
Download: http://ftp.gnu.org/gnu/bash/bash-4.2.tar.gz
MD5 sum: 3fb927c7c33022f1c327f14a81c0d4b0
Home page: http://www.gnu.org/software/binutils/
Download: http://ftp.gnu.org/gnu/binutils/binutils-2.21.tar.bz2
MD5 sum: c84c5acc9d266f1a7044b51c85a823f5
Home page: http://www.gnu.org/software/bison/
Download: http://ftp.gnu.org/gnu/bison/bison-2.4.3.tar.bz2
MD5 sum: c1d3ea81bc370dbd43b6f0b2cd21287e
Home page: http://www.bzip.org/
Download: http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
MD5 sum: 00b516f4704d4a7cb50a1d97e6e8e15b
Home page: http://www.gnu.org/software/coreutils/
Download: http://ftp.gnu.org/gnu/coreutils/coreutils-8.10.tar.gz
MD5 sum: 74d54d09fc5c1bd3337127f49c88b1c5
Home page: http://www.gnu.org/software/dejagnu/
Download: http://ftp.gnu.org/gnu/dejagnu/dejagnu-1.4.4.tar.gz
MD5 sum: 053f18fd5d00873de365413cab17a666
Home page: http://www.gnu.org/software/diffutils/
Download: http://ftp.gnu.org/gnu/diffutils/diffutils-3.0.tar.gz
MD5 sum: 684aaba1baab743a2a90e52162ff07da
Home page: http://e2fsprogs.sourceforge.net/
Download: http://prdownloads.sourceforge.net/e2fsprogs/e2fsprogs-1.41.14.tar.gz
MD5 sum: 05f70470aea2ef7efbb0845b2b116720
Home page: http://expect.sourceforge.net/
Download: http://prdownloads.sourceforge.net/expect/expect5.45.tar.gz
MD5 sum: 44e1a4f4c877e9ddc5a542dfa7ecc92b
Home page: http://www.darwinsys.com/file/
Download: ftp://ftp.astron.com/pub/file/file-5.05.tar.gz
MD5 sum: 0b429063710457be2bd17a18389cb018
File (5.05) may no longer be available at the listed location. The site administrators of the master download location occasionally remove older versions when new ones are released. An alternative download location that may have the correct version available can also be found at: http://www.linuxfromscratch.org/lfs/download.html#ftp.
Home page: http://www.gnu.org/software/findutils/
Download: http://ftp.gnu.org/gnu/findutils/findutils-4.4.2.tar.gz
MD5 sum: 351cc4adb07d54877fa15f75fb77d39f
Home page: http://flex.sourceforge.net
Download: http://prdownloads.sourceforge.net/flex/flex-2.5.35.tar.bz2
MD5 sum: 10714e50cea54dc7a227e3eddcd44d57
Home page: http://www.gnu.org/software/gawk/
Download: http://ftp.gnu.org/gnu/gawk/gawk-3.1.8.tar.bz2
MD5 sum: 52b41c6c4418b3226dfb8f82076193bb
Home page: http://gcc.gnu.org/
Download: http://ftp.gnu.org/gnu/gcc/gcc-4.5.2/gcc-4.5.2.tar.bz2
MD5 sum: d6559145853fbaaa0fd7556ed93bce9a
Home page: http://www.gnu.org/software/gdbm/
Download: http://ftp.gnu.org/gnu/gdbm/gdbm-1.8.3.tar.gz
MD5 sum: 1d1b1d5c0245b1c00aff92da751e9aa1
Home page: http://www.gnu.org/software/gettext/
Download: http://ftp.gnu.org/gnu/gettext/gettext-0.18.1.1.tar.gz
MD5 sum: 3dd55b952826d2b32f51308f2f91aa89
Home page: http://www.gnu.org/software/libc/
Download: http://ftp.gnu.org/gnu/glibc/glibc-2.13.tar.bz2
MD5 sum: 38808215a7c40aa0bb47a5e6d3d12475
Home page: http://www.gnu.org/software/gmp/
Download: http://ftp.gnu.org/gnu/gmp/gmp-5.0.1.tar.bz2
MD5 sum: 6bac6df75c192a13419dfd71d19240a7
Home page: http://www.gnu.org/software/grep/
Download: http://ftp.gnu.org/gnu/grep/grep-2.7.tar.gz
MD5 sum: e848f07e3e79aa7899345d17c7e4115e
Home page: http://www.gnu.org/software/groff/
Download: http://ftp.gnu.org/gnu/groff/groff-1.21.tar.gz
MD5 sum: 8b8cd29385b97616a0f0d96d0951c5bf
Home page: http://www.gnu.org/software/grub/
Download: ftp://alpha.gnu.org/gnu/grub/grub-1.98.tar.gz
MD5 sum: c0bcf60e524739bb64e3a2d4e3732a59
Home page: http://www.gnu.org/software/gzip/
Download: http://ftp.gnu.org/gnu/gzip/gzip-1.4.tar.gz
MD5 sum: e381b8506210c794278f5527cba0e765
Home page: http://freshmeat.net/projects/iana-etc/
MD5 sum: 3ba3afb1d1b261383d247f46cb135ee8
Home page: http://www.gnu.org/software/inetutils/
Download: http://ftp.gnu.org/gnu/inetutils/inetutils-1.8.tar.gz
MD5 sum: ad8fdcdf1797b9ca258264a6b04e48fd
Home page: http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
Download: http://devresources.linuxfoundation.org/dev/iproute2/download/iproute2-2.6.37.tar.bz2
MD5 sum: 9774ff9d74ebd301bf56bd8d74473786
Download: http://www.kernel.org/pub/linux/utils/kbd/kbd-1.15.2.tar.gz
MD5 sum: 77d0b51454522bc6c170bbdc6e31202a
Home page: http://www.greenwoodsoftware.com/less/
Download: http://www.greenwoodsoftware.com/less/less-436.tar.gz
MD5 sum: 817bf051953ad2dea825a1cdf460caa4
Download: http://www.linuxfromscratch.org/lfs/downloads/6.8/lfs-bootscripts-20100627.tar.bz2
MD5 sum: 8260bdb271caa3b538f8e95f65998864
Home page: http://www.gnu.org/software/libtool/
Download: http://ftp.gnu.org/gnu/libtool/libtool-2.4.tar.gz
MD5 sum: b32b04148ecdd7344abc6fe8bd1bb021
Home page: http://www.kernel.org/
Download: http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.37.tar.bz2
MD5 sum: c8ee37b4fdccdb651e0603d35350b434
The Linux kernel is updated relatively often, many times due to discoveries of security vulnerabilities. The latest available 2.6.37.x kernel version should be used, unless the errata page says otherwise.
For users with limited speed or expensive bandwidth who wish to update the Linux kernel, a baseline version of the package and patches can be downloaded separately. This may save some time or cost for a subsequent patch level upgrade within a minor release.
Home page: http://www.gnu.org/software/m4/
Download: http://ftp.gnu.org/gnu/m4/m4-1.4.15.tar.bz2
MD5 sum: c7c32540bc3842d5550f88d47ef551d8
Home page: http://www.gnu.org/software/make/
Download: http://ftp.gnu.org/gnu/make/make-3.82.tar.bz2
MD5 sum: 1a11100f3c63fcf5753818e59d63088f
Home page: http://www.nongnu.org/man-db/
Download: http://download.savannah.gnu.org/releases/man-db/man-db-2.5.9.tar.gz
MD5 sum: 9841394f5c5fe7e2dd2e0c5fb4766d0f
Home page: http://www.kernel.org/doc/man-pages/
Download: http://www.kernel.org/pub/linux/docs/manpages/man-pages-3.32.tar.bz2
MD5 sum: 1278c5289660e42a597fefd30d9bdcf0
Home page: https://modules.wiki.kernel.org/index.php/Module_init_tools_3_12
Download: http://www.kernel.org/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.12.tar.bz2
MD5 sum: 8b2257ce9abef74c4a44d825d23140f3
Home page: http://www.multiprecision.org/
Download: http://www.multiprecision.org/mpc/download/mpc-0.8.2.tar.gz
MD5 sum: e98267ebd5648a39f881d66797122fb6
Home page: http://www.mpfr.org/
Download: http://www.mpfr.org/mpfr-3.0.0/mpfr-3.0.0.tar.bz2
MD5 sum: f45bac3584922c8004a10060ab1a8f9f
Home page: http://www.gnu.org/software/ncurses/
Download: ftp://ftp.gnu.org/gnu/ncurses/ncurses-5.7.tar.gz
MD5 sum: cce05daf61a64501ef6cd8da1f727ec6
Home page: http://savannah.gnu.org/projects/patch/
Download: http://ftp.gnu.org/gnu/patch/patch-2.6.1.tar.bz2
MD5 sum: 0818d1763ae0c4281bcdc63cdac0b2c0
Home page: http://www.perl.org/
Download: http://www.cpan.org/src/5.0/perl-5.12.3.tar.bz2
MD5 sum: 72f3f7e1c700e79bbf9d9279ca5b42d9
Home page: http://pkg-config.freedesktop.org/
Download: http://pkgconfig.freedesktop.org/releases/pkg-config-0.25.tar.gz
MD5 sum: a3270bab3f4b69b7dc6dbdacbcae9745
Home page: http://procps.sourceforge.net/
Download: http://procps.sourceforge.net/procps-3.2.8.tar.gz
MD5 sum: 9532714b6846013ca9898984ba4cd7e0
Home page: http://psmisc.sourceforge.net/
Download: http://prdownloads.sourceforge.net/psmisc/psmisc-22.13.tar.gz
MD5 sum: e2c339e6b65b730042084023784a729e
Home page: http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
Download: http://ftp.gnu.org/gnu/readline/readline-6.2.tar.gz
MD5 sum: 67948acb2ca081f23359d0256e9a271c
Home page: http://www.gnu.org/software/sed/
Download: http://ftp.gnu.org/gnu/sed/sed-4.2.1.tar.bz2
MD5 sum: 7d310fbd76e01a01115075c1fd3f455a
Home page: http://pkg-shadow.alioth.debian.org/
Download: ftp://pkg-shadow.alioth.debian.org/pub/pkg-shadow/shadow-4.1.4.3.tar.bz2
MD5 sum: b8608d8294ac88974f27b20f991c0e79
Home page: http://www.infodrom.org/projects/sysklogd/
Download: http://www.infodrom.org/projects/sysklogd/download/sysklogd-1.5.tar.gz
MD5 sum: e053094e8103165f98ddafe828f6ae4b
Home page: http://savannah.nongnu.org/projects/sysvinit
Download: http://download.savannah.gnu.org/releases/sysvinit/sysvinit-2.88dsf.tar.bz2
MD5 sum: 6eda8a97b86e0a6f59dabbf25202aa6f
Home page: http://www.gnu.org/software/tar/
Download: http://ftp.gnu.org/gnu/tar/tar-1.25.tar.bz2
MD5 sum: 6e497f861c77bbba2f7da4e10270995b
Home page: http://tcl.sourceforge.net/
Download: http://prdownloads.sourceforge.net/tcl/tcl8.5.9-src.tar.gz
MD5 sum: 8512d8db3233041dd68a81476906012a
Home page: http://www.gnu.org/software/texinfo/
Download: http://ftp.gnu.org/gnu/texinfo/texinfo-4.13a.tar.gz
MD5 sum: 71ba711519209b5fb583fed2b3d86fcb
Home page: http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html
Download: http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev-166.tar.bz2
MD5 sum: 4db27d73fdbe94f47fd89fdd105c2dfb
Download: http://anduin.linuxfromscratch.org/sources/other/udev-166-testfiles.tar.bz2
MD5 sum: 64ada14e464dee3388787e3aebf2ac34
Download: http://www.linuxfromscratch.org/lfs/downloads/6.8/udev-config-20100128.tar.bz2
MD5 sum: 32de4eb504b2ad67b43cb4fe16da92e2
Home page: http://userweb.kernel.org/~kzak/util-linux/
Download: http://www.kernel.org/pub/linux/utils/util-linux/v2.19/util-linux-2.19.tar.bz2
MD5 sum: 590ca71aad0b254e2631d84401f28255
Home page: http://www.vim.org
Download: ftp://ftp.vim.org/pub/vim/unix/vim-7.3.tar.bz2
MD5 sum: 5b9510a17074e2b37d8bb38ae09edbf2
Home page: http://tukaani.org/xz
Download: http://tukaani.org/xz/xz-5.0.1.tar.bz2
MD5 sum: cb6c7a58cec4d663a395c54d186ca0c6
Home page: http://www.zlib.net/
Download: http://www.zlib.net/zlib-1.2.5.tar.bz2
MD5 sum: be1e89810e66150f5b0327984d8625a0
Total size of these packages: about 286 MB
In addition to the packages, several patches are also required. These patches correct any mistakes in the packages that should be fixed by the maintainer. The patches also make small modifications to make the packages easier to work with. The following patches will be needed to build an LFS system:
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/bzip2-1.0.6-install_docs-1.patch
MD5 sum: 6a5ac7e89b791aae556de0f745916f7f
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/coreutils-8.10-i18n-1.patch
MD5 sum: 28895e1112835ca04119158d1883a6d5
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/coreutils-8.10-uname-1.patch
MD5 sum: 500481b75892e5c07e19e9953a690e54
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/dejagnu-1.4.4-consolidated-1.patch
MD5 sum: b9949a8abcc210d1dc9cdda06821c199
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/flex-2.5.35-gcc44-1.patch
MD5 sum: ad9109820534278c6dd0898178c0788f
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/gcc-4.5.2-startfiles_fix-1.patch
MD5 sum: 799ef1971350d2e3c794f2123f247cc6
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/glibc-2.13-gcc_fix-1.patch
MD5 sum: d1f28cb98acb9417fe52596908bbb9fd
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/kbd-1.15.2-backspace-1.patch
MD5 sum: f75cca16a38da6caa7d52151f7136895
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/patch-2.6.1-test_fix-1.patch
MD5 sum: c51e1a95bfc5310635d05081472c3534
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/perl-5.12.3-libc-1.patch
MD5 sum: 800dfd3c9618731ee5cf57f77a7942b4
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/procps-3.2.8-fix_HZ_errors-1.patch
MD5 sum: 2ea4c8e9a2c2a5a291ec63c92d7c6e3b
Download: http://www.linuxfromscratch.org/patches/lfs/6.8/procps-3.2.8-watch_unicode-1.patch
MD5 sum: cd1a757e532d93662a7ed71da80e6b58
Total size of these patches: about 154 KB
In addition to the above required patches, there exist a number of optional patches created by the LFS community. These optional patches solve minor problems or enable functionality that is not enabled by default. Feel free to peruse the patches database located at http://www.linuxfromscratch.org/patches/downloads/ and acquire any additional patches to suit your system needs.
Throughout this book, the environment variable LFS
will be used. It is paramount that this
variable is always defined. It should be set to the mount point
chosen for the LFS partition. Check that the LFS
variable is set up properly with:
echo $LFS
Make sure the output shows the path to the LFS partition's
mount point, which is /mnt/lfs
if
the provided example was followed. If the output is incorrect,
the variable can be set with:
export LFS=/mnt/lfs
Having this variable set is beneficial in that commands such as mkdir $LFS/tools can be typed literally. The shell will automatically replace “$LFS” with “/mnt/lfs” (or whatever the variable was set to) when it processes the command line.
Do not forget to check that $LFS
is
set whenever you leave and reenter the current working
environment (as when doing a su to root
or another user).
All programs compiled in Chapter
5 will be installed under $LFS/tools
to keep them separate from the
programs compiled in Chapter
6. The programs compiled here are temporary tools and will
not be a part of the final LFS system. By keeping these
programs in a separate directory, they can easily be discarded
later after their use. This also prevents these programs from
ending up in the host production directories (easy to do by
accident in Chapter
5).
Create the required directory by running the following as
root
:
mkdir -v $LFS/tools
The next step is to create a /tools
symlink on the host system. This will
point to the newly-created directory on the LFS partition. Run
this command as root
as well:
ln -sv $LFS/tools /
The above command is correct. The ln command has a few
syntactic variations, so be sure to check info coreutils ln and
ln(1)
before reporting what you
may think is an error.
The created symlink enables the toolchain to be compiled so
that it always refers to /tools
,
meaning that the compiler, assembler, and linker will work both
in Chapter 5 (when we are still using some tools from the host)
and in the next (when we are “chrooted” to the LFS partition).
When logged in as user root
,
making a single mistake can damage or destroy a system.
Therefore, we recommend building the packages in this chapter
as an unprivileged user. You could use your own user name, but
to make it easier to set up a clean working environment, create
a new user called lfs
as a
member of a new group (also named lfs
) and use this user during the
installation process. As root
,
issue the following commands to add the new user:
groupadd lfs useradd -s /bin/bash -g lfs -m -k /dev/null lfs
The meaning of the command line options:
-s
/bin/bash
This makes bash the default shell
for user lfs
.
-g
lfs
This option adds user lfs
to group lfs
.
-m
This creates a home directory for lfs
.
-k
/dev/null
This parameter prevents possible copying of files from a
skeleton directory (default is /etc/skel
) by changing the input
location to the special null device.
lfs
This is the actual name for the created group and user.
To log in as lfs
(as opposed to
switching to user lfs
when
logged in as root
, which does
not require the lfs
user to
have a password), give lfs
a
password:
passwd lfs
Grant lfs
full access to
$LFS/tools
by making lfs
the directory owner:
chown -v lfs $LFS/tools
If a separate working directory was created as suggested, give
user lfs
ownership of this
directory:
chown -v lfs $LFS/sources
Next, login as user lfs
. This
can be done via a virtual console, through a display manager,
or with the following substitute user command:
su - lfs
The “-
” instructs
su to start a
login shell as opposed to a non-login shell. The difference
between these two types of shells can be found in detail in
bash(1)
and info bash.
Set up a good working environment by creating two new startup
files for the bash shell. While logged in
as user lfs
, issue the
following command to create a new .bash_profile
:
cat > ~/.bash_profile << "EOF"
exec env -i HOME=$HOME TERM=$TERM PS1='\u:\w\$ ' /bin/bash
EOF
When logged on as user lfs
, the
initial shell is usually a login shell which reads the
/etc/profile
of the host
(probably containing some settings and environment variables)
and then .bash_profile
. The
exec env
-i.../bin/bash command in the .bash_profile
file replaces the running shell
with a new one with a completely empty environment, except for
the HOME
, TERM
, and PS1
variables. This ensures that no unwanted and potentially
hazardous environment variables from the host system leak into
the build environment. The technique used here achieves the
goal of ensuring a clean environment.
The new instance of the shell is a non-login shell, which does not read
the /etc/profile
or .bash_profile
files, but rather reads the
.bashrc
file instead. Create the
.bashrc
file now:
cat > ~/.bashrc << "EOF"
set +h
umask 022
LFS=/mnt/lfs
LC_ALL=POSIX
LFS_TGT=$(uname -m)-lfs-linux-gnu
PATH=/tools/bin:/bin:/usr/bin
export LFS LC_ALL LFS_TGT PATH
EOF
The set +h
command turns off bash's hash function. Hashing
is ordinarily a useful feature—bash uses a hash table to
remember the full path of executable files to avoid searching
the PATH
time and again to find the
same executable. However, the new tools should be used as soon
as they are installed. By switching off the hash function, the
shell will always search the PATH
when a program is to be run. As such, the shell will find the
newly compiled tools in $LFS/tools
as soon as they are available
without remembering a previous version of the same program in a
different location.
Setting the user file-creation mask (umask) to 022 ensures that
newly created files and directories are only writable by their
owner, but are readable and executable by anyone (assuming
default modes are used by the open(2)
system call, new files will end up
with permission mode 644 and directories with mode 755).
The LFS
variable should be set to
the chosen mount point.
The LC_ALL
variable controls the
localization of certain programs, making their messages follow
the conventions of a specified country. If the host system uses
a version of Glibc older than 2.2.4, having LC_ALL
set to something other than
“POSIX” or
“C” (during this
chapter) may cause issues if you exit the chroot environment
and wish to return later. Setting LC_ALL
to “POSIX” or “C” (the two are equivalent) ensures that
everything will work as expected in the chroot environment.
The LFS_TGT
variable sets a
non-default, but compatible machine description for use when
building our cross compiler and linker and when cross compiling
our temporary toolchain. More information is contained in
Section 5.2,
“Toolchain Technical Notes”.
By putting /tools/bin
ahead of
the standard PATH
, all the programs
installed in Chapter
5 are picked up by the shell immediately after their
installation. This, combined with turning off hashing, limits
the risk that old programs are used from the host when the same
programs are available in the chapter 5 environment.
Finally, to have the environment fully prepared for building the temporary tools, source the just-created user profile:
source ~/.bash_profile
Many people would like to know beforehand approximately how long it takes to compile and install each package. Because Linux From Scratch can be built on many different systems, it is impossible to provide accurate time estimates. The biggest package (Glibc) will take approximately 20 minutes on the fastest systems, but could take up to three days on slower systems! Instead of providing actual times, the Standard Build Unit (SBU) measure will be used instead.
The SBU measure works as follows. The first package to be compiled from this book is Binutils in Chapter 5. The time it takes to compile this package is what will be referred to as the Standard Build Unit or SBU. All other compile times will be expressed relative to this time.
For example, consider a package whose compilation time is 4.5 SBUs. This means that if a system took 10 minutes to compile and install the first pass of Binutils, it will take approximately 45 minutes to build this example package. Fortunately, most build times are shorter than the one for Binutils.
In general, SBUs are not entirely accurate because they depend on many factors, including the host system's version of GCC. They are provided here to give an estimate of how long it might take to install a package, but the numbers can vary by as much as dozens of minutes in some cases.
To view actual timings for a number of specific machines, we recommend The LinuxFromScratch SBU Home Page at http://www.linuxfromscratch.org/~sbu/.
For many modern systems with multiple processors (or cores) the compilation time for a package can be reduced by performing a "parallel make" by either setting an environment variable or telling the make program how many processors are available. For instance, a Core2Duo can support two simultaneous processes with:
export MAKEFLAGS='-j 2'
or just building with:
make -j2
When multiple processors are used in this way, the SBU units in the book will vary even more than they normally would. Analyzing the output of the build process will also be more difficult because the lines of different processes will be interleaved. If you run into a problem with a build step, revert back to a single processor build to properly analyze the error messages.
Most packages provide a test suite. Running the test suite for a newly built package is a good idea because it can provide a “sanity check” indicating that everything compiled correctly. A test suite that passes its set of checks usually proves that the package is functioning as the developer intended. It does not, however, guarantee that the package is totally bug free.
Some test suites are more important than others. For example, the test suites for the core toolchain packages—GCC, Binutils, and Glibc—are of the utmost importance due to their central role in a properly functioning system. The test suites for GCC and Glibc can take a very long time to complete, especially on slower hardware, but are strongly recommended.
Experience has shown that there is little to be gained from running the test suites in Chapter 5. There can be no escaping the fact that the host system always exerts some influence on the tests in that chapter, often causing inexplicable failures. Because the tools built in Chapter 5 are temporary and eventually discarded, we do not recommend running the test suites in Chapter 5 for the average reader. The instructions for running those test suites are provided for the benefit of testers and developers, but they are strictly optional.
A common issue with running the test suites for Binutils and
GCC is running out of pseudo terminals (PTYs). This can result
in a high number of failing tests. This may happen for several
reasons, but the most likely cause is that the host system does
not have the devpts
file system
set up correctly. This issue is discussed in greater detail at
http://www.linuxfromscratch.org//lfs/faq.html#no-ptys.
Sometimes package test suites will fail, but for reasons which the developers are aware of and have deemed non-critical. Consult the logs located at http://www.linuxfromscratch.org/lfs/build-logs/6.8/ to verify whether or not these failures are expected. This site is valid for all tests throughout this book.
This chapter shows how to build a minimal Linux system. This system will contain just enough tools to start constructing the final LFS system in Chapter 6 and allow a working environment with more user convenience than a minimum environment would.
There are two steps in building this minimal system. The first step is to build a new and host-independent toolchain (compiler, assembler, linker, libraries, and a few useful utilities). The second step uses this toolchain to build the other essential tools.
The files compiled in this chapter will be installed under the
$LFS/tools
directory to keep them
separate from the files installed in the next chapter and the
host production directories. Since the packages compiled here
are temporary, we do not want them to pollute the soon-to-be
LFS system.
This section explains some of the rationale and technical details behind the overall build method. It is not essential to immediately understand everything in this section. Most of this information will be clearer after performing an actual build. This section can be referred to at any time during the process.
The overall goal of Chapter 5 is to produce a temporary area that contains a known-good set of tools that can be isolated from the host system. By using chroot, the commands in the remaining chapters will be contained within that environment, ensuring a clean, trouble-free build of the target LFS system. The build process has been designed to minimize the risks for new readers and to provide the most educational value at the same time.
Before continuing, be aware of the name of the working
platform, often referred to as the target triplet. A simple
way to determine the name of the target triplet is to run the
config.guess
script that comes with the source for many packages. Unpack
the Binutils sources and run the script: ./config.guess
and note the
output. For example, for a modern 32-bit Intel processor the
output will likely be i686-pc-linux-gnu.
Also be aware of the name of the platform's dynamic linker,
often referred to as the dynamic loader (not to be confused
with the standard linker ld that is part of
Binutils). The dynamic linker provided by Glibc finds and
loads the shared libraries needed by a program, prepares the
program to run, and then runs it. The name of the dynamic
linker for a 32-bit Intel machine will be ld-linux.so.2
. A sure-fire way to determine
the name of the dynamic linker is to inspect a random binary
from the host system by running: readelf -l <name of binary> | grep
interpreter
and noting the output. The
authoritative reference covering all platforms is in the
shlib-versions
file in the root
of the Glibc source tree.
Some key technical points of how the Chapter 5 build method works:
Slightly adjusting the name of the working platform, by
changing the "vendor" field target triplet by way of the
LFS_TGT
variable, ensures that
the first build of Binutils and GCC produces a compatible
cross-linker and cross-compiler. Instead of producing
binaries for another architecture, the cross-linker and
cross-compiler will produce binaries compatible with the
current hardware.
The temporary libraries are cross-compiled. Because a cross-compiler by its nature cannot rely on anything from its host system, this method removes potential contamination of the target system by lessening the chance of headers or libraries from the host being incorporated into the new tools. Cross-compilation also allows for the possibility of building both 32-bit and 64-bit libraries on 64-bit capable hardware.
Careful manipulation of gcc's specs
file tells the compiler which
target dynamic linker will be used
Binutils is installed first because the configure runs of both GCC and Glibc perform various feature tests on the assembler and linker to determine which software features to enable or disable. This is more important than one might first realize. An incorrectly configured GCC or Glibc can result in a subtly broken toolchain, where the impact of such breakage might not show up until near the end of the build of an entire distribution. A test suite failure will usually highlight this error before too much additional work is performed.
Binutils installs its assembler and linker in two locations,
/tools/bin
and /tools/$LFS_TGT/bin
. The tools in one
location are hard linked to the other. An important facet of
the linker is its library search order. Detailed information
can be obtained from ld by passing it the
--verbose
flag. For
example, an ld --verbose | grep
SEARCH
will illustrate the current search paths
and their order. It shows which files are linked by
ld by compiling a
dummy program and passing the --verbose
switch to the linker.
For example, gcc dummy.c
-Wl,--verbose 2>&1 | grep succeeded
will
show all the files successfully opened during the linking.
The next package installed is GCC. An example of what can be seen during its run of configure is:
checking what assembler to use... /tools/i686-lfs-linux-gnu/bin/as
checking what linker to use... /tools/i686-lfs-linux-gnu/bin/ld
This is important for the reasons mentioned above. It also
demonstrates that GCC's configure script does not search the
PATH directories to find which tools to use. However, during
the actual operation of gcc itself, the same search
paths are not necessarily used. To find out which standard
linker gcc will
use, run: gcc
-print-prog-name=ld
.
Detailed information can be obtained from gcc by passing it the
-v
command line option
while compiling a dummy program. For example, gcc -v dummy.c
will show
detailed information about the preprocessor, compilation, and
assembly stages, including gcc's included search paths
and their order.
The next package installed is Glibc. The most important
considerations for building Glibc are the compiler, binary
tools, and kernel headers. The compiler is generally not an
issue since Glibc will always use the compiler relating to the
--host
parameter passed
to its configure script, e.g. in our case, i686-lfs-linux-gnu-gcc. The
binary tools and kernel headers can be a bit more complicated.
Therefore, take no risks and use the available configure
switches to enforce the correct selections. After the run of
configure, check
the contents of the config.make
file in the glibc-build
directory
for all important details. Note the use of CC="i686-lfs-gnu-gcc"
to control
which binary tools are used and the use of the -nostdinc
and -isystem
flags to control the
compiler's include search path. These items highlight an
important aspect of the Glibc package—it is very
self-sufficient in terms of its build machinery and generally
does not rely on toolchain defaults.
After the Glibc installation, change gcc's specs file to point to
the new dynamic linker in /tools/lib
. This last step is vital in
ensuring that searching and linking take place only within the
/tools
prefix. A hard-wired path
to a dynamic linker is embedded into every Executable and Link
Format (ELF)-shared executable. This can be inspected by
running: readelf -l <name of
binary> | grep interpreter
. Amending
gcc's specs file
ensures that every program compiled from here through the end
of this chapter will use the new dynamic linker in /tools/lib
.
For the second pass of GCC, its sources also need to be
modified to tell GCC to use the new dynamic linker. Failure to
do so will result in the GCC programs themselves having the
name of the dynamic linker from the host system's /lib
directory embedded into them, which
would defeat the goal of getting away from the host.
During the second pass of Binutils, we are able to utilize the
--with-lib-path
configure switch to control ld's library search path.
From this point onwards, the core toolchain is self-contained
and self-hosted. The remainder of the Chapter
5 packages all build against the new Glibc in /tools
.
Upon entering the chroot environment in Chapter
6, the first major package to be installed is Glibc, due to
its self-sufficient nature mentioned above. Once this Glibc is
installed into /usr
, we will
perform a quick changeover of the toolchain defaults, and then
proceed in building the rest of the target LFS system.
When building packages there are several assumptions made within the instructions:
Several of the packages are patched before compilation, but only when the patch is needed to circumvent a problem. A patch is often needed in both this and the next chapter, but sometimes in only one or the other. Therefore, do not be concerned if instructions for a downloaded patch seem to be missing. Warning messages about offset or fuzz may also be encountered when applying a patch. Do not worry about these warnings, as the patch was still successfully applied.
During the compilation of most packages, there will be several warnings that scroll by on the screen. These are normal and can safely be ignored. These warnings are as they appear—warnings about deprecated, but not invalid, use of the C or C++ syntax. C standards change fairly often, and some packages still use the older standard. This is not a problem, but does prompt the warning.
After installing each package, delete its source and build directories, unless specifically instructed otherwise. Deleting the sources prevents mis-configuration when the same package is reinstalled later.
Check one last time that the LFS
environment variable is set up
properly:
echo $LFS
Make sure the output shows the path to the LFS
partition's mount point, which is /mnt/lfs
, using our example.
Finally, two last important items must be emphasized:
The build instructions assume that the bash shell is in use.
Before issuing the build instructions for a package,
the package should be unpacked as user lfs
, and a cd into the created
directory should be performed.
To re-emphasize the build process:
1. Place all the sources and patches in a directory that will be accessible
from the chroot envronment such as /mnt/lfs/sources/. Do not put
sources in /mnt/lfs/tools/.
2. Change to the sources directory.
3. For each package:
a. Using the tar program, extract the package to be built.
b. Change to the directory created when the package was extracted.
c. Follow the book's instructions for building the package.
d. Change back to the sources directory.
e. Delete the extracted source directory and any <package>-build
directories that were created in the build process.
The Binutils package contains a linker, an assembler, and other tools for handling object files.
Go back and re-read the notes in the previous section. Understanding the notes labeled important will save you a lot of problems later.
It is important that Binutils be the first package compiled because both Glibc and GCC perform various tests on the available linker and assembler to determine which of their own features to enable.
The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build directory:
mkdir -v ../binutils-build cd ../binutils-build
In order for the SBU values listed in the rest of the book
to be of any use, measure the time it takes to build this
package from the configuration, up to and including the
first install. To achieve this easily, wrap the three
commands in a time command like this:
time { ./configure ...
&& make && make install; }
.
The approximate build SBU values and required disk space in Chapter 5 does not include test suite data.
Now prepare Binutils for compilation:
../binutils-2.21/configure \ --target=$LFS_TGT --prefix=/tools \ --disable-nls --disable-werror
The meaning of the configure options:
--target=$LFS_TGT
Because the machine description in the LFS_TGT
variable is slightly different
than the value returned by the config.guess script,
this switch will tell the configure script to
adjust Binutil's build system for building a cross
linker.
--prefix=/tools
This tells the configure script to prepare to install
the Binutils programs in the /tools
directory.
--disable-nls
This disables internationalization as i18n is not needed for the temporary tools.
--disable-werror
This prevents the build from stopping in the event that there are warnings from the host's compiler.
Continue with compiling the package:
make
Compilation is now complete. Ordinarily we would now run the test suite, but at this early stage the test suite framework (Tcl, Expect, and DejaGNU) is not yet in place. The benefits of running the tests at this point are minimal since the programs from this first pass will soon be replaced by those from the second.
If building on x86_64, create a symlink to ensure the sanity of the toolchain:
case $(uname -m) in x86_64) mkdir -v /tools/lib && ln -sv lib /tools/lib64 ;; esac
Install the package:
make install
Details on this package are located in Section 6.12.2, “Contents of Binutils.”
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.
GCC now requires the GMP, MPFR and MPC packages. As these packages may not be included in your host distribution, they will be built with GCC. Unpack each package into the GCC source directory and rename the resulting directories so the GCC build procedures will automatically use them:
tar -jxf ../mpfr-3.0.0.tar.bz2 mv -v mpfr-3.0.0 mpfr tar -jxf ../gmp-5.0.1.tar.bz2 mv -v gmp-5.0.1 gmp tar -zxf ../mpc-0.8.2.tar.gz mv -v mpc-0.8.2 mpc
The GCC documentation recommends building GCC outside of the source directory in a dedicated build directory:
mkdir -v ../gcc-build cd ../gcc-build
Prepare GCC for compilation:
../gcc-4.5.2/configure \ --target=$LFS_TGT --prefix=/tools \ --disable-nls --disable-shared --disable-multilib \ --disable-decimal-float --disable-threads \ --disable-libmudflap --disable-libssp \ --disable-libgomp --enable-languages=c \ --with-gmp-include=$(pwd)/gmp --with-gmp-lib=$(pwd)/gmp/.libs \ --without-ppl --without-cloog
The meaning of the configure options:
--disable-shared
This switch forces GCC to link its internal libraries statically. We do this to avoid possible issues with the host system.
--disable-decimal-float,
--disable-threads, --disable-libmudflap,
--disable-libssp, --disable-libgomp
These switches disable support for the decimal floating point extension, threading, libmudflap, libssp and libgomp respectively. These features will fail to compile when building a cross-compiler and are not necessary for the task of cross-compiling the temporary libc.
--disable-multilib
On x86_64, LFS does not yet support a multilib configuration. This switch is harmless for x86.
--enable-languages=c
This option ensures that only the C compiler is built. This is the only language needed now.
--with-gmp-include=...
This option tells GCC where the GMP headers are located.
--with-gmp-lib=...
This option tells GCC where the GMP library is located.
--without-ppl,
--without-cloog
These switches prevent GCC from building against the PPL and CLooG libraries which may be present on the host system, but will not be available in the chroot environment.
Compile GCC by running:
make
Compilation is now complete. At this point, the test suite would normally be run, but, as mentioned before, the test suite framework is not in place yet. The benefits of running the tests at this point are minimal since the programs from this first pass will soon be replaced.
Install the package:
make install
Using --disable-shared
means that the
libgcc_eh.a
file isn't created
and installed. The Glibc package depends on this library as
it uses -lgcc_eh
within its build system. This dependency can be satisfied by
creating a symlink to libgcc.a
,
since that file will end up containing the objects normally
contained in libgcc_eh.a
:
ln -vs libgcc.a `$LFS_TGT-gcc -print-libgcc-file-name | \ sed 's/libgcc/&_eh/'`
Details on this package are located in Section 6.16.2, “Contents of GCC.”
The Linux API Headers expose the kernel's API for use by Glibc.
The Linux kernel needs to expose an Application Programming Interface (API) for the system's C library (Glibc in LFS) to use. This is done by way of sanitizing various C header files that are shipped in the Linux kernel source tarball.
Make sure there are no stale files and dependencies lying around from previous activity:
make mrproper
Now test and extract the user-visible kernel headers from the source. They are placed in an intermediate local directory and copied to the needed location because the extraction process removes any existing files in the target directory.
make headers_check make INSTALL_HDR_PATH=dest headers_install cp -rv dest/include/* /tools/include
Details on this package are located in Section 6.7.2, “Contents of Linux API Headers.”
The Glibc package contains the main C library. This library provides the basic routines for allocating memory, searching directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.
Fix a bug that prevents Glibc from building with GCC-4.5.2:
patch -Np1 -i ../glibc-2.13-gcc_fix-1.patch
The Glibc documentation recommends building Glibc outside of the source directory in a dedicated build directory:
mkdir -v ../glibc-build cd ../glibc-build
Because Glibc no longer supports i386, its developers say to
use the compiler flag -march=i486
when building it
for x86 machines. There are several ways to accomplish that,
but testing shows that the flag is best placed inside the
build variable “CFLAGS”. Instead of overriding
completely what Glibc's internal build system uses for
CFLAGS, append the new flag to the existing contents of
CFLAGS by making use of the special file configparms
. The -mtune=native flag is also
necessary to reset a reasonable value for -mtune that is
changed when setting -march.
case `uname -m` in i?86) echo "CFLAGS += -march=i486 -mtune=native" > configparms ;; esac
Next, prepare Glibc for compilation:
../glibc-2.13/configure --prefix=/tools \ --host=$LFS_TGT --build=$(../glibc-2.13/scripts/config.guess) \ --disable-profile --enable-add-ons \ --enable-kernel=2.6.22.5 --with-headers=/tools/include \ libc_cv_forced_unwind=yes libc_cv_c_cleanup=yes
The meaning of the configure options:
--host=$LFS_TGT,
--build=$(../glibc-2.13/scripts/config.guess)
The combined effect of these switches is that Glibc's
build system configures itself to cross-compile, using
the cross-linker and cross-compiler in /tools
.
--disable-profile
This builds the libraries without profiling information. Omit this option if profiling on the temporary tools is necessary.
--enable-add-ons
This tells Glibc to use the NPTL add-on as its threading library.
--enable-kernel=2.6.22.5
This tells Glibc to compile the library with support for 2.6.22.5 and later Linux kernels. Workarounds for older kernels are not enabled.
--with-headers=/tools/include
This tells Glibc to compile itself against the headers recently installed to the tools directory, so that it knows exactly what features the kernel has and can optimize itself accordingly.
libc_cv_forced_unwind=yes
The linker installed during Section 5.4, “Binutils-2.21 - Pass 1” was cross-compiled and as such cannot be used until Glibc has been installed. This means that the configure test for force-unwind support will fail, as it relies on a working linker. The libc_cv_forced_unwind=yes variable is passed in order to inform configure that force-unwind support is available without it having to run the test.
libc_cv_c_cleanup=yes
Simlarly, we pass libc_cv_c_cleanup=yes through to the configure script so that the test is skipped and C cleanup handling support is configured.
During this stage the following warning might appear:
configure: WARNING: *** These auxiliary programs are missing or *** incompatible versions: msgfmt *** some features will be disabled. *** Check the INSTALL file for required versions.
The missing or incompatible msgfmt program is generally harmless. This msgfmt program is part of the Gettext package which the host distribution should provide.
Compile the package:
make
This package does come with a test suite, however, it cannot be run at this time because we do not have a C++ compiler yet.
The test suite also requires locale data to be installed in order to run successfully. Locale data provides information to the system regarding such things as the date, time, and currency formats accepted and output by system utilities. If the test suites are not being run in this chapter (as per the recommendation), there is no need to install the locales now. The appropriate locales will be installed in the next chapter. To install the Glibc locales anyway, use instructions from Section 6.9, “Glibc-2.13.”
Install the package:
make install
Details on this package are located in Section 6.9.4, “Contents of Glibc.”
Now that the temporary C libraries have been installed, all
tools compiled in the rest of this chapter should be linked
against these libraries. In order to accomplish this, the
cross-compiler's specs file needs to be adjusted to point to
the new dynamic linker in /tools
.
This is done by dumping the compiler's “specs” file to a location where it will
look for it by default. A simple sed substitution then alters
the dynamic linker that GCC will use. The principle here is to
find all references to the dynamic linker file in /lib
or possibly /lib64
if the host system is 64-bit capable,
and adjust them to point to the new location in /tools
.
For the sake of accuracy, it is recommended to use a copy-and-paste method when issuing the following command. Be sure to visually inspect the specs file to verify that it has properly adjusted all references to the dynamic linker location. Refer to Section 5.2, “Toolchain Technical Notes,” for the default name of the dynamic linker, if necessary.
SPECS=`dirname $($LFS_TGT-gcc -print-libgcc-file-name)`/specs $LFS_TGT-gcc -dumpspecs | sed \ -e 's@/lib\(64\)\?/ld@/tools&@g' \ -e "/^\*cpp:$/{n;s,$, -isystem /tools/include,}" > $SPECS echo "New specs file is: $SPECS" unset SPECS
At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of the new toolchain are working as expected. To perform a sanity check, run the following commands:
echo 'main(){}' > dummy.c $LFS_TGT-gcc -B/tools/lib dummy.c readelf -l a.out | grep ': /tools'
If everything is working correctly, there should be no errors, and the output of the last command will be of the form:
[Requesting program interpreter: /tools/lib/ld-linux.so.2]
Note that /tools/lib
, or
/tools/lib64
for 64-bit
machines appears as the prefix of the dynamic linker.
If the output is not shown as above or there was no output at all, then something is wrong. Investigate and retrace the steps to find out where the problem is and correct it. This issue must be resolved before continuing on. Something may have gone wrong with the specs file amendment above. In this case, redo the specs file amendment, being careful to copy-and-paste the commands.
Once all is well, clean up the test files:
rm -v dummy.c a.out
Building Binutils in the next section will serve as an additional check that the toolchain has been built properly. If Binutils fails to build, it is an indication that something has gone wrong with the previous Binutils, GCC, or Glibc installations.
The Binutils package contains a linker, an assembler, and other tools for handling object files.
Create a separate build directory again:
mkdir -v ../binutils-build cd ../binutils-build
Prepare Binutils for compilation:
CC="$LFS_TGT-gcc -B/tools/lib/" \ AR=$LFS_TGT-ar RANLIB=$LFS_TGT-ranlib \ ../binutils-2.21/configure --prefix=/tools \ --disable-nls --with-lib-path=/tools/lib
The meaning of the new configure options:
CC="$LFS_TGT-gcc -B/tools/lib/"
AR=$LFS_TGT-ar RANLIB=$LFS_TGT-ranlib
Because this is really a native build of Binutils, setting these variables ensures that the build system uses the cross-compiler and associated tools instead of the ones on the host system.
--with-lib-path=/tools/lib
This tells the configure script to specify the library
search path during the compilation of Binutils,
resulting in /tools/lib
being passed to the linker. This prevents the linker
from searching through library directories on the host.
Compile the package:
make
Install the package:
make install
Now prepare the linker for the “Re-adjusting” phase in the next chapter:
make -C ld clean make -C ld LIB_PATH=/usr/lib:/lib cp -v ld/ld-new /tools/bin
The meaning of the make parameters:
-C ld
clean
This tells the make program to remove all compiled
files in the ld
subdirectory.
-C ld
LIB_PATH=/usr/lib:/lib
This option rebuilds everything in the ld
subdirectory. Specifying the
LIB_PATH
Makefile variable
on the command line allows us to override the default
value of the temporary tools and point it to the proper
final path. The value of this variable specifies the
linker's default library search path. This preparation
is used in the next chapter.
Details on this package are located in Section 6.12.2, “Contents of Binutils.”
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.
Versions of GCC later than 4.3 will treat this build as if it
were a relocated compiler and disallow searching for
startfiles in the location specified by --prefix
. Since this will not
be a relocated compiler, and the startfiles in /tools
are crucial to building a working
compiler linked to the libs in /tools
, apply the following patch which
partially reverts GCC to its old behavior:
patch -Np1 -i ../gcc-4.5.2-startfiles_fix-1.patch
Under normal circumstances the GCC fixincludes script is run in order to fix potentially broken header files. As GCC-4.5.2 and Glibc-2.13 have already been installed at this point, and their respective header files are known to not require fixing, the fixincludes script is not required. In fact, running this script may actually pollute the build environment by installing fixed headers from the host system into GCC's private include directory. The running of the fixincludes script can be suppressed by issuing the following commands:
cp -v gcc/Makefile.in{,.orig} sed 's@\./fixinc\.sh@-c true@' gcc/Makefile.in.orig > gcc/Makefile.in
For x86 machines, a bootstrap build of GCC uses the
-fomit-frame-pointer
compiler
flag. Non-bootstrap builds omit this flag by default, and the
goal should be to produce a compiler that is exactly the same
as if it were bootstrapped. Apply the following sed command to force the
build to use the flag:
cp -v gcc/Makefile.in{,.tmp} sed 's/^T_CFLAGS =$/& -fomit-frame-pointer/' gcc/Makefile.in.tmp \ > gcc/Makefile.in
The following command will change the location of GCC's
default dynamic linker to use the one installed in
/tools
. It also removes
/usr/include
from GCC's include
search path. Doing this now rather than adjusting the specs
file after installation ensures that the new dynamic linker
is used during the actual build of GCC. That is, all of the
binaries created during the build will link against the new
Glibc. Issue:
for file in \ $(find gcc/config -name linux64.h -o -name linux.h -o -name sysv4.h) do cp -uv $file{,.orig} sed -e 's@/lib\(64\)\?\(32\)\?/ld@/tools&@g' \ -e 's@/usr@/tools@g' $file.orig > $file echo ' #undef STANDARD_INCLUDE_DIR #define STANDARD_INCLUDE_DIR 0 #define STANDARD_STARTFILE_PREFIX_1 "" #define STANDARD_STARTFILE_PREFIX_2 ""' >> $file touch $file.orig done
In case the above seems hard to follow, let's break it down a
bit. First we find all the files under the gcc/config
directory that are named either
linux.h
, linux64.h
or sysv4.h
. For each file found, we copy it to
a file of the same name but with an added suffix of
“.orig”. Then the
first sed expression prepends “/tools” to every instance of
“/lib/ld”,
“/lib64/ld” or
“/lib32/ld”, while the
second one replaces hard-coded instances of
“/usr”. Then we add
our define statements which alter the include search path and
the default startfile prefix to the end of the file. Finally,
we use touch to
update the timestamp on the copied files. When used in
conjunction with cp
-u, this prevents unexpected changes to the
original files in case the commands are inadvertently run
twice.
On x86_64, unsetting the multilib spec for GCC ensures that it won't attempt to link against libraries on the host:
case $(uname -m) in x86_64) for file in $(find gcc/config -name t-linux64) ; do \ cp -v $file{,.orig} sed '/MULTILIB_OSDIRNAMES/d' $file.orig > $file done ;; esac
As in the first build of GCC it requires the GMP, MPFR and MPC packages. Unpack the tarballs and move them into the required directory names:
tar -jxf ../mpfr-3.0.0.tar.bz2 mv -v mpfr-3.0.0 mpfr tar -jxf ../gmp-5.0.1.tar.bz2 mv -v gmp-5.0.1 gmp tar -zxf ../mpc-0.8.2.tar.gz mv -v mpc-0.8.2 mpc
Create a separate build directory again:
mkdir -v ../gcc-build cd ../gcc-build
Before starting to build GCC, remember to unset any environment variables that override the default optimization flags.
Now prepare GCC for compilation:
CC="$LFS_TGT-gcc -B/tools/lib/" \ AR=$LFS_TGT-ar RANLIB=$LFS_TGT-ranlib \ ../gcc-4.5.2/configure --prefix=/tools \ --with-local-prefix=/tools --enable-clocale=gnu \ --enable-shared --enable-threads=posix \ --enable-__cxa_atexit --enable-languages=c,c++ \ --disable-libstdcxx-pch --disable-multilib \ --disable-bootstrap --disable-libgomp \ --with-gmp-include=$(pwd)/gmp --with-gmp-lib=$(pwd)/gmp/.libs \ --without-ppl --without-cloog
The meaning of the new configure options:
--enable-clocale=gnu
This option ensures the correct locale model is selected for the C++ libraries under all circumstances. If the configure script finds the de_DE locale installed, it will select the correct gnu locale model. However, if the de_DE locale is not installed, there is the risk of building Application Binary Interface (ABI)-incompatible C++ libraries because the incorrect generic locale model may be selected.
--enable-threads=posix
This enables C++ exception handling for multi-threaded code.
--enable-__cxa_atexit
This option allows use of __cxa_atexit
, rather than
atexit
, to register C++
destructors for local statics and global objects. This
option is essential for fully standards-compliant
handling of destructors. It also affects the C++ ABI,
and therefore results in C++ shared libraries and C++
programs that are interoperable with other Linux
distributions.
--enable-languages=c,c++
This option ensures that both the C and C++ compilers are built.
--disable-libstdcxx-pch
Do not build the pre-compiled header (PCH) for
libstdc++
. It takes up a
lot of space, and we have no use for it.
--disable-bootstrap
For native builds of GCC, the default is to do a "bootstrap" build. This does not just compile GCC, but compiles it several times. It uses the programs compiled in a first round to compile itself a second time, and then again a third time. The second and third iterations are compared to make sure it can reproduce itself flawlessly. This also implies that it was compiled correctly. However, the LFS build method should provide a solid compiler without the need to bootstrap each time.
Compile the package:
make
Install the package:
make install
As a finishing touch, create a symlink. Many programs and scripts run cc instead of gcc, which is used to keep programs generic and therefore usable on all kinds of UNIX systems where the GNU C compiler is not always installed. Running cc leaves the system administrator free to decide which C compiler to install:
ln -vs gcc /tools/bin/cc
At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of the new toolchain are working as expected. To perform a sanity check, run the following commands:
echo 'main(){}' > dummy.c cc dummy.c readelf -l a.out | grep ': /tools'
If everything is working correctly, there should be no errors, and the output of the last command will be of the form:
[Requesting program interpreter: /tools/lib/ld-linux.so.2]
Note that /tools/lib
, or
/tools/lib64
for 64-bit
machines appears as the prefix of the dynamic linker.
If the output is not shown as above or there was no output
at all, then something is wrong. Investigate and retrace
the steps to find out where the problem is and correct it.
This issue must be resolved before continuing on. First,
perform the sanity check again, using gcc instead of
cc. If this
works, then the /tools/bin/cc
symlink is missing. Install the symlink as per above. Next,
ensure that the PATH
is correct.
This can be checked by running echo $PATH and verifying
that /tools/bin
is at the
head of the list. If the PATH
is
wrong it could mean that you are not logged in as user
lfs
or that something went
wrong back in Section 4.4,
“Setting Up the Environment.”
Once all is well, clean up the test files:
rm -v dummy.c a.out
Details on this package are located in Section 6.16.2, “Contents of GCC.”
The Tcl package contains the Tool Command Language.
This package and the next two (Expect and DejaGNU) are installed to support running the test suites for GCC and Binutils. Installing three packages for testing purposes may seem excessive, but it is very reassuring, if not essential, to know that the most important tools are working properly. Even if the test suites are not run in this chapter (they are not mandatory), these packages are required to run the test suites in Chapter 6.
Prepare Tcl for compilation:
cd unix ./configure --prefix=/tools
Build the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Tcl test suite anyway, issue the following command:
TZ=UTC make test
The Tcl test suite may experience failures under certain host
conditions that are not fully understood. Therefore, test
suite failures here are not surprising, and are not
considered critical. The TZ=UTC
parameter sets the time
zone to Coordinated Universal Time (UTC), also known as
Greenwich Mean Time (GMT), but only for the duration of the
test suite run. This ensures that the clock tests are
exercised correctly. Details on the TZ
environment variable are provided in
Chapter
7.
Install the package:
make install
Make the installed library writable so debugging symbols can be removed later:
chmod -v u+w /tools/lib/libtcl8.5.so
Install Tcl's headers. The next package, Expect, requires them to build.
make install-private-headers
Now make a necessary symbolic link:
ln -sv tclsh8.5 /tools/bin/tclsh
The Expect package contains a program for carrying out scripted dialogues with other interactive programs.
First, force Expect's configure script to use /bin/stty
instead of a /usr/local/bin/stty
it may find on the host
system. This will ensure that our test suite tools remain
sane for the final builds of our toolchain:
cp -v configure{,.orig} sed 's:/usr/local/bin:/bin:' configure.orig > configure
Now prepare Expect for compilation:
./configure --prefix=/tools --with-tcl=/tools/lib \ --with-tclinclude=/tools/include
The meaning of the configure options:
--with-tcl=/tools/lib
This ensures that the configure script finds the Tcl installation in the temporary tools location instead of possibly locating an existing one on the host system.
--with-tclinclude=/tools/include
This explicitly tells Expect where to find Tcl's internal headers. Using this option avoids conditions where configure fails because it cannot automatically discover the location of Tcl's headers.
Build the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Expect test suite anyway, issue the following command:
make test
Note that the Expect test suite is known to experience failures under certain host conditions that are not within our control. Therefore, test suite failures here are not surprising and are not considered critical.
Install the package:
make SCRIPTS="" install
The meaning of the make parameter:
SCRIPTS=""
This prevents installation of the supplementary Expect scripts, which are not needed.
The DejaGNU package contains a framework for testing other programs.
The most recent version of this package was released in 2004. Apply some fixes that have accumulated since then:
patch -Np1 -i ../dejagnu-1.4.4-consolidated-1.patch
Prepare DejaGNU for compilation:
./configure --prefix=/tools
Build and install the package:
make install
To test the results, issue:
make check
The Ncurses package contains libraries for terminal-independent handling of character screens.
Prepare Ncurses for compilation:
./configure --prefix=/tools --with-shared \ --without-debug --without-ada --enable-overwrite
The meaning of the configure options:
--without-ada
This ensures that Ncurses does not build support for the Ada compiler which may be present on the host but will not be available once we enter the chroot environment.
--enable-overwrite
This tells Ncurses to install its header files into
/tools/include
, instead
of /tools/include/ncurses
, to ensure
that other packages can find the Ncurses headers
successfully.
Compile the package:
make
This package has a test suite, but it can only be run after
the package has been installed. The tests reside in the
test/
directory. See the
README
file in that directory
for further details.
Install the package:
make install
Details on this package are located in Section 6.19.2, “Contents of Ncurses.”
The Bash package contains the Bourne-Again SHell.
Prepare Bash for compilation:
./configure --prefix=/tools --without-bash-malloc
The meaning of the configure options:
--without-bash-malloc
This option turns off the use of Bash's memory
allocation (malloc
)
function which is known to cause segmentation faults.
By turning this option off, Bash will use the
malloc
functions from
Glibc which are more stable.
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Bash test suite anyway, issue the following command:
make tests
Install the package:
make install
Make a link for the programs that use sh for a shell:
ln -vs bash /tools/bin/sh
Details on this package are located in Section 6.29.2, “Contents of Bash.”
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2 yields a much better compression percentage than with the traditional gzip.
The Bzip2 package does not contain a configure script. Compile and test it with:
make
Install the package:
make PREFIX=/tools install
Details on this package are located in Section 6.36.2, “Contents of Bzip2.”
The Coreutils package contains utilities for showing and setting the basic system characteristics.
Prepare Coreutils for compilation:
./configure --prefix=/tools --enable-install-program=hostname
The meaning of the configure options:
--enable-install-program=hostname
This enables the hostname binary to be built and installed – it is disabled by default but is required by the Perl test suite.
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Coreutils test suite anyway, issue the following command:
make RUN_EXPENSIVE_TESTS=yes check
The RUN_EXPENSIVE_TESTS=yes
parameter tells the test suite to run several additional
tests that are considered relatively expensive (in terms of
CPU power and memory usage) on some platforms, but generally
are not a problem on Linux.
Install the package:
make install
The above command refuses to install su
because the program cannot be installed
setuid root as a non-privileged user. By manually installing
it with a different name, we can use it for running tests in
the final system as a non-privileged user and we keep a
possibly useful su from our host first in
our PATH. Install it with:
cp -v src/su /tools/bin/su-tools
Details on this package are located in Section 6.22.2, “Contents of Coreutils.”
The Diffutils package contains programs that show the differences between files or directories.
Prepare Diffutils for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Diffutils test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.37.2, “Contents of Diffutils.”
The File package contains a utility for determining the type of a given file or files.
Prepare File for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the File test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.39.2, “Contents of File.”
The Findutils package contains programs to find files. These programs are provided to recursively search through a directory tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable if the database has not been recently updated).
Prepare Findutils for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Findutils test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.40.2, “Contents of Findutils.”
The Gawk package contains programs for manipulating text files.
Prepare Gawk for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Gawk test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.38.2, “Contents of Gawk.”
The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled with NLS (Native Language Support), enabling them to output messages in the user's native language.
For our temporary set of tools, we only need to build and install one binary from Gettext.
Prepare Gettext for compilation:
cd gettext-tools ./configure --prefix=/tools --disable-shared
The meaning of the configure option:
--disable-shared
We do not need to install any of the shared Gettext libraries at this time, therefore there is no need to build them.
Compile the package:
make -C gnulib-lib make -C src msgfmt
As only one binary has been compiled, it is not possible to run the test suite without compiling additional support libraries from the Gettext package. It is therefore not recommended to attempt to run the test suite at this stage.
Install the msgfmt binary:
cp -v src/msgfmt /tools/bin
Details on this package are located in Section 6.42.2, “Contents of Gettext.”
The Grep package contains programs for searching through files.
Prepare Grep for compilation:
./configure --prefix=/tools \ --disable-perl-regexp
The meaning of the configure switches:
--disable-perl-regexp
This ensures that the grep program does not get linked against a Perl Compatible Regular Expression (PCRE) library that may be present on the host but will not be available once we enter the chroot environment.
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Grep test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.27.2, “Contents of Grep.”
The Gzip package contains programs for compressing and decompressing files.
Prepare Gzip for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Gzip test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.45.2, “Contents of Gzip.”
The M4 package contains a macro processor.
Prepare M4 for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the M4 test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.24.2, “Contents of M4.”
The Make package contains a program for compiling packages.
Prepare Make for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Make test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.49.2, “Contents of Make.”
The Patch package contains a program for modifying or creating files by applying a “patch” file typically created by the diff program.
Prepare Patch for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Patch test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.53.2, “Contents of Patch.”
The Perl package contains the Practical Extraction and Report Language.
First apply the following patch to adapt some hard-wired paths to the C library:
patch -Np1 -i ../perl-5.12.3-libc-1.patch
Prepare Perl for compilation (make sure to get the 'Data/Dumper Fcntl IO' part of the command correct—they are all letters):
sh Configure -des -Dprefix=/tools \ -Dstatic_ext='Data/Dumper Fcntl IO'
The meaning of the configure options:
-Dstatic_ext='Data/Dumper Fcntl
IO'
This tells Perl to build the minimum set of static extensions needed for installing and testing the Coreutils and Glibc packages in the next chapter.
Only a few of the utilities contained in this package, and one of its libraries, need to be built:
make perl utilities ext/Errno/pm_to_blib
Although Perl comes with a test suite, it is not recommended to run it at this point. Only part of Perl was built and running make test now will cause the rest of Perl to be built as well, which is unnecessary at this point. The test suite can be run in the next chapter if desired.
Install these tools and their libraries:
cp -v perl pod/pod2man /tools/bin mkdir -pv /tools/lib/perl5/5.12.3 cp -Rv lib/* /tools/lib/perl5/5.12.3
Details on this package are located in Section 6.33.2, “Contents of Perl.”
The Sed package contains a stream editor.
Prepare Sed for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Sed test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.17.2, “Contents of Sed.”
The Tar package contains an archiving program.
Prepare Tar for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Tar test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.58.2, “Contents of Tar.”
The Texinfo package contains programs for reading, writing, and converting info pages.
Prepare Texinfo for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Texinfo test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.59.2, “Contents of Texinfo.”
The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma and the newer xz compression formats. Compressing text files with xz yields a better compression percentage than with the traditional gzip or bzip2 commands.
Prepare Xz for compilation:
./configure --prefix=/tools
Compile the package:
make
Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools here in this chapter. To run the Xz test suite anyway, issue the following command:
make check
Install the package:
make install
Details on this package are located in Section 6.50.2, “Contents of Xz.”
The steps in this section are optional, but if the LFS partition is rather small, it is beneficial to learn that unnecessary items can be removed. The executables and libraries built so far contain about 70 MB of unneeded debugging symbols. Remove those symbols with:
strip --strip-debug /tools/lib/* strip --strip-unneeded /tools/{,s}bin/*
These commands will skip a number of files, reporting that it does not recognize their file format. Most of these are scripts instead of binaries.
Take care not to use
--strip-unneeded
on the
libraries. The static ones would be destroyed and the toolchain
packages would need to be built all over again.
To save nearly 25 MB more, remove the documentation:
rm -rf /tools/{,share}/{info,man}
At this point, you should have at least 850 MB of free space in
$LFS
that can be used to build and
install Glibc in the next phase. If you can build and install
Glibc, you can build and install the rest too.
The commands in the remainder of this book must be performed
while logged in as user root
and no longer as user lfs
.
Also, double check that $LFS
is
set in root
's environment.
Currently, the $LFS/tools
directory is owned by the user lfs
, a user that exists only on the host
system. If the $LFS/tools
directory is kept as is, the files are owned by a user ID
without a corresponding account. This is dangerous because a
user account created later could get this same user ID and
would own the $LFS/tools
directory and all the files therein, thus exposing these files
to possible malicious manipulation.
To avoid this issue, you could add the lfs
user to the new LFS system later when
creating the /etc/passwd
file,
taking care to assign it the same user and group IDs as on the
host system. Better yet, change the ownership of the
$LFS/tools
directory to user
root
by running the following
command:
chown -R root:root $LFS/tools
Although the $LFS/tools
directory
can be deleted once the LFS system has been finished, it can be
retained to build additional LFS systems of the same book version. How best
to backup $LFS/tools
is a matter
of personal preference.
If you intend to keep the temporary tools for use in building future LFS systems, now is the time to back them up. Subsequent commands in chapter 6 will alter the tools currently in place, rendering them useless for future builds.
In this chapter, we enter the building site and start constructing the LFS system in earnest. That is, we chroot into the temporary mini Linux system, make a few final preparations, and then begin installing the packages.
The installation of this software is straightforward. Although in many cases the installation instructions could be made shorter and more generic, we have opted to provide the full instructions for every package to minimize the possibilities for mistakes. The key to learning what makes a Linux system work is to know what each package is used for and why you (or the system) may need it.
We do not recommend using optimizations. They can make a
program run slightly faster, but they may also cause
compilation difficulties and problems when running the program.
If a package refuses to compile when using optimization, try to
compile it without optimization and see if that fixes the
problem. Even if the package does compile when using
optimization, there is the risk it may have been compiled
incorrectly because of the complex interactions between the
code and build tools. Also note that the -march
and -mtune
options using values not specified in the book have not been
tested. This may cause problems with the toolchain packages
(Binutils, GCC and Glibc). The small potential gains achieved
in using compiler optimizations are often outweighed by the
risks. First-time builders of LFS are encouraged to build
without custom optimizations. The subsequent system will still
run very fast and be stable at the same time.
The order that packages are installed in this chapter needs to
be strictly followed to ensure that no program accidentally
acquires a path referring to /tools
hard-wired into it. For the same
reason, do not compile separate packages in parallel. Compiling
in parallel may save time (especially on dual-CPU machines),
but it could result in a program containing a hard-wired path
to /tools
, which will cause the
program to stop working when that directory is removed.
Before the installation instructions, each installation page provides information about the package, including a concise description of what it contains, approximately how long it will take to build, and how much disk space is required during this building process. Following the installation instructions, there is a list of programs and libraries (along with brief descriptions of these) that the package installs.
The SBU values and required disk space includes test suite data for all applicable packages in Chapter 6.
Various file systems exported by the kernel are used to communicate to and from the kernel itself. These file systems are virtual in that no disk space is used for them. The content of the file systems resides in memory.
Begin by creating directories onto which the file systems will be mounted:
mkdir -v $LFS/{dev,proc,sys}
When the kernel boots the system, it requires the presence of
a few device nodes, in particular the console
and null
devices. The device nodes must be
created on the hard disk so that they are available before
udevd has been
started, and additionally when Linux is started with
init=/bin/bash
.
Create the devices by running the following commands:
mknod -m 600 $LFS/dev/console c 5 1 mknod -m 666 $LFS/dev/null c 1 3
The recommended method of populating the /dev
directory with devices is to mount a
virtual filesystem (such as tmpfs
) on the /dev
directory, and allow the devices to be
created dynamically on that virtual filesystem as they are
detected or accessed. Device creation is generally done
during the boot process by Udev. Since this new system does
not yet have Udev and has not yet been booted, it is
necessary to mount and populate /dev
manually. This is accomplished by bind
mounting the host system's /dev
directory. A bind mount is a special type of mount that
allows you to create a mirror of a directory or mount point
to some other location. Use the following command to achieve
this:
mount -v --bind /dev $LFS/dev
Package Management is an often requested addition to the LFS Book. A Package Manager allows tracking the installation of files making it easy to remove and upgrade packages. As well as the binary and library files, a package manager will handle the installation of configuration files. Before you begin to wonder, NO—this section will not talk about nor recommend any particular package manager. What it provides is a roundup of the more popular techniques and how they work. The perfect package manager for you may be among these techniques or may be a combination of two or more of these techniques. This section briefly mentions issues that may arise when upgrading packages.
Some reasons why no package manager is mentioned in LFS or BLFS include:
Dealing with package management takes the focus away from the goals of these books—teaching how a Linux system is built.
There are multiple solutions for package management, each having its strengths and drawbacks. Including one that satisfies all audiences is difficult.
There are some hints written on the topic of package management. Visit the Hints Project and see if one of them fits your need.
A Package Manager makes it easy to upgrade to newer versions when they are released. Generally the instructions in the LFS and BLFS Book can be used to upgrade to the newer versions. Here are some points that you should be aware of when upgrading packages, especially on a running system.
If one of the toolchain packages (Glibc, GCC or Binutils) needs to be upgraded to a newer minor version, it is safer to rebuild LFS. Though you may be able to get by rebuilding all the packages in their dependency order, we do not recommend it. For example, if glibc-2.2.x needs to be updated to glibc-2.3.x, it is safer to rebuild. For micro version updates, a simple reinstallation usually works, but is not guaranteed. For example, upgrading from glibc-2.3.4 to glibc-2.3.5 will not usually cause any problems.
If a package containing a shared library is updated,
and if the name of the library changes, then all the
packages dynamically linked to the library need to be
recompiled to link against the newer library. (Note
that there is no correlation between the package
version and the name of the library.) For example,
consider a package foo-1.2.3 that installs a shared
library with name libfoo.so.1
. Say you upgrade the
package to a newer version foo-1.2.4 that installs a
shared library with name libfoo.so.2
. In this case, all
packages that are dynamically linked to libfoo.so.1
need to be recompiled to
link against libfoo.so.2
.
Note that you should not remove the previous libraries
until the dependent packages are recompiled.
The following are some common package management techniques. Before making a decision on a package manager, do some research on the various techniques, particularly the drawbacks of the particular scheme.
Yes, this is a package management technique. Some folks do not find the need for a package manager because they know the packages intimately and know what files are installed by each package. Some users also do not need any package management because they plan on rebuilding the entire system when a package is changed.
This is a simplistic package management that does not need
any extra package to manage the installations. Each package
is installed in a separate directory. For example, package
foo-1.1 is installed in /usr/pkg/foo-1.1
and a symlink is made
from /usr/pkg/foo
to
/usr/pkg/foo-1.1
. When
installing a new version foo-1.2, it is installed in
/usr/pkg/foo-1.2
and the
previous symlink is replaced by a symlink to the new
version.
Environment variables such as PATH
, LD_LIBRARY_PATH
, MANPATH
, INFOPATH
and CPPFLAGS
need to be expanded
to include /usr/pkg/foo
. For
more than a few packages, this scheme becomes unmanageable.
This is a variation of the previous package management
technique. Each package is installed similar to the
previous scheme. But instead of making the symlink, each
file is symlinked into the /usr
hierarchy. This removes the need to
expand the environment variables. Though the symlinks can
be created by the user to automate the creation, many
package managers have been written using this approach. A
few of the popular ones include Stow, Epkg, Graft, and
Depot.
The installation needs to be faked, so that the package
thinks that it is installed in /usr
though in reality it is installed in
the /usr/pkg
hierarchy.
Installing in this manner is not usually a trivial task.
For example, consider that you are installing a package
libfoo-1.1. The following instructions may not install the
package properly:
./configure --prefix=/usr/pkg/libfoo/1.1 make make install
The installation will work, but the dependent packages may
not link to libfoo as you would expect. If you compile a
package that links against libfoo, you may notice that it
is linked to /usr/pkg/libfoo/1.1/lib/libfoo.so.1
instead of /usr/lib/libfoo.so.1
as you would expect.
The correct approach is to use the DESTDIR
strategy to fake installation of the
package. This approach works as follows:
./configure --prefix=/usr make make DESTDIR=/usr/pkg/libfoo/1.1 install
Most packages support this approach, but there are some
which do not. For the non-compliant packages, you may
either need to manually install the package, or you may
find that it is easier to install some problematic packages
into /opt
.
In this technique, a file is timestamped before the installation of the package. After the installation, a simple use of the find command with the appropriate options can generate a log of all the files installed after the timestamp file was created. A package manager written with this approach is install-log.
Though this scheme has the advantage of being simple, it has two drawbacks. If, during installation, the files are installed with any timestamp other than the current time, those files will not be tracked by the package manager. Also, this scheme can only be used when one package is installed at a time. The logs are not reliable if two packages are being installed on two different consoles.
In this approach, the commands that the installation scripts perform are recorded. There are two techniques that one can use:
The LD_PRELOAD
environment
variable can be set to point to a library to be preloaded
before installation. During installation, this library
tracks the packages that are being installed by attaching
itself to various executables such as cp, install, mv and tracking the
system calls that modify the filesystem. For this approach
to work, all the executables need to be dynamically linked
without the suid or sgid bit. Preloading the library may
cause some unwanted side-effects during installation.
Therefore, it is advised that one performs some tests to
ensure that the package manager does not break anything and
logs all the appropriate files.
The second technique is to use strace, which logs all system calls made during the execution of the installation scripts.
In this scheme, the package installation is faked into a separate tree as described in the Symlink style package management. After the installation, a package archive is created using the installed files. This archive is then used to install the package either on the local machine or can even be used to install the package on other machines.
This approach is used by most of the package managers found in the commercial distributions. Examples of package managers that follow this approach are RPM (which, incidentally, is required by the Linux Standard Base Specification), pkg-utils, Debian's apt, and Gentoo's Portage system. A hint describing how to adopt this style of package management for LFS systems is located at http://www.linuxfromscratch.org/hints/downloads/files/fakeroot.txt.
Creation of package files that include dependency information is complex and is beyond the scope of LFS.
Slackware uses a tar based system for package archives. This system purposely does not handle package dependencies as more complex package managers do. For details of Slackware package management, see http://www.slackbook.org/html/package-management.html.
This scheme, unique to LFS, was devised by Matthias Benkmann, and is available from the Hints Project. In this scheme, each package is installed as a separate user into the standard locations. Files belonging to a package are easily identified by checking the user ID. The features and shortcomings of this approach are too complex to describe in this section. For the details please see the hint at http://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt.
One of the advantages of an LFS system is that there are no
files that depend on the position of files on a disk system.
Cloning an LFS build to another computer with an architecture
similar to the base system is as simple as using tar on the LFS partition
that contains the root directory (about 250MB uncompressed
for a base LFS build), copying that file via network transfer
or CD-ROM to the new system and expanding it. From that
point, a few configuration files will have to be changed.
Configuration files that may need to be updated include:
/etc/hosts
, /etc/fstab
, /etc/passwd
, /etc/group
, /etc/shadow
, /etc/ld.so.conf
, /etc/scsi_id.config
, /etc/sysconfig/network
and /etc/sysconfig/network-devices/ifconfig.eth0/ipv4
.
A custom kernel may need to be built for the new system depending on differences in system hardware and the original kernel configuration.
Finally the new system has to be made bootable via Section 8.4, “Using GRUB to Set Up the Boot Process”.
It is time to enter the chroot environment to begin building
and installing the final LFS system. As user root
, run the following command to enter
the realm that is, at the moment, populated with only the
temporary tools:
chroot "$LFS" /tools/bin/env -i \ HOME=/root TERM="$TERM" PS1='\u:\w\$ ' \ PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin \ /tools/bin/bash --login +h
The -i
option given to
the env command
will clear all variables of the chroot environment. After that,
only the HOME
, TERM
, PS1
, and
PATH
variables are set again. The
TERM=$TERM
construct
will set the TERM
variable inside
chroot to the same value as outside chroot. This variable is
needed for programs like vim and less to operate properly. If
other variables are needed, such as CFLAGS
or CXXFLAGS
,
this is a good place to set them again.
From this point on, there is no need to use the LFS
variable anymore, because all work will be
restricted to the LFS file system. This is because the Bash
shell is told that $LFS
is now
the root (/
) directory.
Notice that /tools/bin
comes last
in the PATH
. This means that a
temporary tool will no longer be used once its final version is
installed. This occurs when the shell does not
“remember” the locations
of executed binaries—for this reason, hashing is switched
off by passing the +h
option to bash.
Note that the bash prompt will say
I have no name!
This is
normal because the /etc/passwd
file has not been created yet.
It is important that all the commands throughout the remainder of this chapter and the following chapters are run from within the chroot environment. If you leave this environment for any reason (rebooting for example), ensure that the virtual kernel filesystems are mounted as explained in Section 6.2.2, “Mounting and Populating /dev” and Section 6.2.3, “Mounting Virtual Kernel File Systems” and enter chroot again before continuing with the installation.
It is time to create some structure in the LFS file system. Create a standard directory tree by issuing the following commands:
mkdir -pv /{bin,boot,etc/opt,home,lib,mnt,opt} mkdir -pv /{media/{floppy,cdrom},sbin,srv,var} install -dv -m 0750 /root install -dv -m 1777 /tmp /var/tmp mkdir -pv /usr/{,local/}{bin,include,lib,sbin,src} mkdir -pv /usr/{,local/}share/{doc,info,locale,man} mkdir -v /usr/{,local/}share/{misc,terminfo,zoneinfo} mkdir -pv /usr/{,local/}share/man/man{1..8} for dir in /usr /usr/local; do ln -sv share/{man,doc,info} $dir done case $(uname -m) in x86_64) ln -sv lib /lib64 && ln -sv lib /usr/lib64 ;; esac mkdir -v /var/{lock,log,mail,run,spool} mkdir -pv /var/{opt,cache,lib/{misc,locate},local}
Directories are, by default, created with permission mode 755,
but this is not desirable for all directories. In the commands
above, two changes are made—one to the home directory of
user root
, and another to the
directories for temporary files.
The first mode change ensures that not just anybody can enter
the /root
directory—the
same as a normal user would do with his or her home directory.
The second mode change makes sure that any user can write to
the /tmp
and /var/tmp
directories, but cannot remove
another user's files from them. The latter is prohibited by the
so-called “sticky bit,”
the highest bit (1) in the 1777 bit mask.
The directory tree is based on the Filesystem Hierarchy
Standard (FHS) (available at http://www.pathname.com/fhs/).
In addition to the FHS, we create compatibility symlinks for
the man
, doc
, and info
directories since many packages still try to install their
documentation into /usr/<directory>
or /usr/local/<directory>
as opposed to
/usr/share/<directory>
or
/usr/local/share/<directory>
. The FHS
also stipulates the existence of /usr/local/games
and /usr/share/games
. The FHS is not precise as
to the structure of the /usr/local/share
subdirectory, so we create
only the directories that are needed. However, feel free to
create these directories if you prefer to conform more
strictly to the FHS.
Some programs use hard-wired paths to programs which do not exist yet. In order to satisfy these programs, create a number of symbolic links which will be replaced by real files throughout the course of this chapter after the software has been installed:
ln -sv /tools/bin/{bash,cat,echo,pwd,stty} /bin ln -sv /tools/bin/perl /usr/bin ln -sv /tools/lib/libgcc_s.so{,.1} /usr/lib ln -sv /tools/lib/libstdc++.so{,.6} /usr/lib ln -sv bash /bin/sh
A proper Linux system maintains a list of the mounted file
systems in the file /etc/mtab
.
Normally, this file would be created when we mount a new file
system. Since we will not be mounting any file systems inside
our chroot environment, create an empty file for utilities that
expect the presence of /etc/mtab
:
touch /etc/mtab
In order for user root
to be
able to login and for the name “root” to be recognized, there must be
relevant entries in the /etc/passwd
and /etc/group
files.
Create the /etc/passwd
file by
running the following command:
cat > /etc/passwd << "EOF"
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/dev/null:/bin/false
nobody:x:99:99:Unprivileged User:/dev/null:/bin/false
EOF
The actual password for root
(the “x” used here is
just a placeholder) will be set later.
Create the /etc/group
file by
running the following command:
cat > /etc/group << "EOF"
root:x:0:
bin:x:1:
sys:x:2:
kmem:x:3:
tty:x:4:
tape:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
lp:x:9:
dialout:x:10:
audio:x:11:
video:x:12:
utmp:x:13:
usb:x:14:
cdrom:x:15:
mail:x:34:
nogroup:x:99:
EOF
The created groups are not part of any standard—they are
groups decided on in part by the requirements of the Udev
configuration in this chapter, and in part by common convention
employed by a number of existing Linux distributions. The Linux
Standard Base (LSB, available at http://www.linuxbase.org)
recommends only that, besides the group root
with a Group ID (GID) of 0, a group
bin
with a GID of 1 be present.
All other group names and GIDs can be chosen freely by the
system administrator since well-written programs do not depend
on GID numbers, but rather use the group's name.
To remove the “I have no
name!” prompt, start a new shell. Since a full
Glibc was installed in Chapter
5 and the /etc/passwd
and
/etc/group
files have been
created, user name and group name resolution will now work:
exec /tools/bin/bash --login +h
Note the use of the +h
directive. This tells bash not to use its internal
path hashing. Without this directive, bash would remember the paths
to binaries it has executed. To ensure the use of the newly
compiled binaries as soon as they are installed, the +h
directive will be used for the
duration of this chapter.
The login, agetty, and init programs (and others) use a number of log files to record information such as who was logged into the system and when. However, these programs will not write to the log files if they do not already exist. Initialize the log files and give them proper permissions:
touch /var/run/utmp /var/log/{btmp,lastlog,wtmp} chgrp -v utmp /var/run/utmp /var/log/lastlog chmod -v 664 /var/run/utmp /var/log/lastlog
The /var/run/utmp
file records
the users that are currently logged in. The /var/log/wtmp
file records all logins and
logouts. The /var/log/lastlog
file records when each user last logged in. The /var/log/btmp
file records the bad login
attempts.
The Linux API Headers expose the kernel's API for use by Glibc.
The Linux kernel needs to expose an Application Programming Interface (API) for the system's C library (Glibc in LFS) to use. This is done by way of sanitizing various C header files that are shipped in the Linux kernel source tarball.
Make sure there are no stale files and dependencies lying around from previous activity:
make mrproper
Now test and extract the user-visible kernel headers from the source. They are placed in an intermediate local directory and copied to the needed location because the extraction process removes any existing files in the target directory. There are also some hidden files used by the kernel developers and not needed by LFS that are removed from the intermediate directory.
make headers_check make INSTALL_HDR_PATH=dest headers_install find dest/include \( -name .install -o -name ..install.cmd \) -delete cp -rv dest/include/* /usr/include
The Man-pages package contains over 1,900 man pages.
Install Man-pages by running:
make install
The Glibc package contains the main C library. This library provides the basic routines for allocating memory, searching directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.
Some packages outside of LFS suggest installing GNU
libiconv in order to translate data from one encoding to
another. The project's home page (http://www.gnu.org/software/libiconv/)
says “This library provides an
iconv()
implementation, for
use on systems which don't have one, or whose
implementation cannot convert from/to
Unicode.” Glibc provides an iconv()
implementation and can convert
from/to Unicode, therefore libiconv is not required on an
LFS system.
The Glibc build system is self-contained and will install
perfectly, even though the compiler specs file and linker are
still pointing at /tools
. The
specs and linker cannot be adjusted before the Glibc install
because the Glibc autoconf tests would give false results and
defeat the goal of achieving a clean build.
When running make
install, a script called test-installation.pl
performs a small
sanity test on our newly installed Glibc. However, because
our toolchain still points to the /tools
directory, the sanity test would be
carried out against the wrong Glibc. We can force the script
to check the Glibc we have just installed with the following:
DL=$(readelf -l /bin/sh | sed -n 's@.*interpret.*/tools\(.*\)]$@\1@p') sed -i "s|libs -o|libs -L/usr/lib -Wl,-dynamic-linker=$DL -o|" \ scripts/test-installation.pl unset DL
In addition, there is a bug in the test-installation.pl
script in that it
tries to link a test program to a library that isn't
installed by make
install. Issue the following sed command to fix it:
sed -i -e 's/"db1"/& \&\& $name ne "nss_test1"/' scripts/test-installation.pl
The ldd shell script contains Bash-specific syntax. Change its default program interpreter to /bin/bash in case another /bin/sh is installed as described in the Shells chapter of the BLFS book:
sed -i 's|@BASH@|/bin/bash|' elf/ldd.bash.in
Fix a bug that prevents Glibc from building with GCC-4.5.2:
patch -Np1 -i ../glibc-2.13-gcc_fix-1.patch
Fix a stack imbalance that occurs under some conditions:
sed -i '195,213 s/PRIVATE_FUTEX/FUTEX_CLOCK_REALTIME/' \ nptl/sysdeps/unix/sysv/linux/x86_64/pthread_rwlock_timed{rd,wr}lock.S
The Glibc documentation recommends building Glibc outside of the source directory in a dedicated build directory:
mkdir -v ../glibc-build cd ../glibc-build
As in Chapter 5, add the needed compiler flags to CFLAGS for x86 machines. Here, the optimization of the library is also set for the gcc compiler to enhance compilation speed (-pipe) and package performance (-O3).
case `uname -m` in i?86) echo "CFLAGS += -march=i486 -mtune=native -O3 -pipe" > configparms ;; esac
Prepare Glibc for compilation:
../glibc-2.13/configure --prefix=/usr \ --disable-profile --enable-add-ons \ --enable-kernel=2.6.22.5 --libexecdir=/usr/lib/glibc
The meaning of the new configure options:
--libexecdir=/usr/lib/glibc
This changes the location of the pt_chown program from
its default of /usr/libexec
to /usr/lib/glibc
.
Compile the package:
make
In this section, the test suite for Glibc is considered critical. Do not skip it under any circumstance.
Before running the tests, copy a file from the source tree into our build tree to prevent a couple of test failures, then test the results:
cp -v ../glibc-2.13/iconvdata/gconv-modules iconvdata make -k check 2>&1 | tee glibc-check-log grep Error glibc-check-log
You will probably see an expected (ignored) failure in the posix/annexc test. In addition the Glibc test suite is somewhat dependent on the host system. This is a list of the most common issues:
The nptl/tst-clock2, nptl/tst-attr3, and rt/tst-cpuclock2 tests have been known to fail. The reason is not completely understood, but indications are that minor timing issues can trigger these failures.
The math tests sometimes fail when running on systems where the CPU is not a relatively new genuine Intel or authentic AMD processor.
If you have mounted the LFS partition with the
noatime
option,
the atime test
will fail. As mentioned in Section 2.4,
“Mounting the New Partition”, do not
use the noatime
option while building LFS.
When running on older and slower hardware or on systems under load, some tests can fail because of test timeouts being exceeded. Modifying the make check command to set a TIMEOUTFACTOR is reported to help eliminate these errors (e.g. TIMEOUTFACTOR=16 make -k check).
Though it is a harmless message, the install stage of Glibc
will complain about the absence of /etc/ld.so.conf
. Prevent this warning with:
touch /etc/ld.so.conf
Install the package:
make install
The locales that can make the system respond in a different language were not installed by the above command. None of the locales are required, but if some of them are missing, test suites of the future packages would skip important testcases.
Individual locales can be installed using the localedef program. E.g.,
the first localedef command below
combines the /usr/share/i18n/locales/cs_CZ
charset-independent locale definition with the /usr/share/i18n/charmaps/UTF-8.gz
charmap
definition and appends the result to the /usr/lib/locale/locale-archive
file. The
following instructions will install the minimum set of
locales necessary for the optimal coverage of tests:
mkdir -pv /usr/lib/locale localedef -i cs_CZ -f UTF-8 cs_CZ.UTF-8 localedef -i de_DE -f ISO-8859-1 de_DE localedef -i de_DE@euro -f ISO-8859-15 de_DE@euro localedef -i de_DE -f UTF-8 de_DE.UTF-8 localedef -i en_HK -f ISO-8859-1 en_HK localedef -i en_PH -f ISO-8859-1 en_PH localedef -i en_US -f ISO-8859-1 en_US localedef -i en_US -f UTF-8 en_US.UTF-8 localedef -i es_MX -f ISO-8859-1 es_MX localedef -i fa_IR -f UTF-8 fa_IR localedef -i fr_FR -f ISO-8859-1 fr_FR localedef -i fr_FR@euro -f ISO-8859-15 fr_FR@euro localedef -i fr_FR -f UTF-8 fr_FR.UTF-8 localedef -i it_IT -f ISO-8859-1 it_IT localedef -i ja_JP -f EUC-JP ja_JP localedef -i tr_TR -f UTF-8 tr_TR.UTF-8 localedef -i zh_CN -f GB18030 zh_CN.GB18030
In addition, install the locale for your own country, language and character set.
Alternatively, install all locales listed in the glibc-2.13/localedata/SUPPORTED
file (it
includes every locale listed above and many more) at once
with the following time-consuming command:
make localedata/install-locales
Then use the localedef command to create
and install locales not listed in the glibc-2.13/localedata/SUPPORTED
file in the
unlikely case you need them.
The /etc/nsswitch.conf
file
needs to be created because, although Glibc provides defaults
when this file is missing or corrupt, the Glibc defaults do
not work well in a networked environment. The time zone also
needs to be configured.
Create a new file /etc/nsswitch.conf
by running the
following:
cat > /etc/nsswitch.conf << "EOF"
# Begin /etc/nsswitch.conf
passwd: files
group: files
shadow: files
hosts: files dns
networks: files
protocols: files
services: files
ethers: files
rpc: files
# End /etc/nsswitch.conf
EOF
One way to determine the local time zone, run the following script:
tzselect
After answering a few questions about the location, the
script will output the name of the time zone (e.g.,
America/Edmonton).
There are also some other possible timezones listed in
/usr/share/zoneinfo
such as
Canada/Eastern or
EST5EDT that are not
identified by the script but can be used.
Then create the /etc/localtime
file by running:
cp -v --remove-destination /usr/share/zoneinfo/<xxx>
\
/etc/localtime
Replace <xxx>
with the name of the time zone selected (e.g.,
Canada/Eastern).
The meaning of the cp option:
--remove-destination
This is needed to force removal of the already existing
symbolic link. The reason for copying the file instead
of using a symlink is to cover the situation where
/usr
is on a separate
partition. This could be important when booted into
single user mode.
By default, the dynamic loader (/lib/ld-linux.so.2
) searches through
/lib
and /usr/lib
for dynamic libraries that are
needed by programs as they are run. However, if there are
libraries in directories other than /lib
and /usr/lib
, these need to be added to the
/etc/ld.so.conf
file in order
for the dynamic loader to find them. Two directories that are
commonly known to contain additional libraries are
/usr/local/lib
and /opt/lib
, so add those directories to the
dynamic loader's search path.
Create a new file /etc/ld.so.conf
by running the following:
cat > /etc/ld.so.conf << "EOF"
# Begin /etc/ld.so.conf
/usr/local/lib
/opt/lib
# End /etc/ld.so.conf
EOF
Can be used to create a stack trace when a program terminates with a segmentation fault |
|
Generates message catalogues |
|
Displays the system configuration values for file system specific variables |
|
Gets entries from an administrative database |
|
Performs character set conversion |
|
Creates fastloading iconv module configuration files |
|
Configures the dynamic linker runtime bindings |
|
Reports which shared libraries are required by each given program or shared library |
|
Assists ldd with object files |
|
Prints various information about the current locale |
|
Compiles locale specifications |
|
Reads and interprets a memory trace file and displays a summary in human-readable format |
|
A daemon that provides a cache for the most common name service requests |
|
Dumps information generated by PC profiling |
|
A helper program for grantpt to set the owner, group and access permissions of a slave pseudo terminal |
|
Generates C code to implement the Remote Procedure Call (RPC) protocol |
|
Makes an RPC call to an RPC server |
|
A statically linked ln program |
|
Reads and displays shared object profiling data |
|
Asks the user about the location of the system and reports the corresponding time zone description |
|
Traces the execution of a program by printing the currently executed function |
|
The time zone dumper |
|
The time zone compiler |
|
The helper program for shared library executables |
|
Used internally by Glibc as a gross hack to get
broken programs (e.g., some Motif applications)
running. See comments in |
|
The segmentation fault signal handler, used by catchsegv |
|
An asynchronous name lookup library |
|
Provides the portability needed in order to run certain Berkeley Software Distribution (BSD) programs under Linux |
|
The main C library |
|
Used internally by Glibc for handling
internationalized domain names in the |
|
The cryptography library |
|
The dynamic linking interface library |
|
Dummy library containing no functions. Previously was a runtime library for g++ |
|
Linking in this module forces error handling rules for math functions as defined by the Institute of Electrical and Electronic Engineers (IEEE). The default is POSIX.1 error handling |
|
The mathematical library |
|
Turns on memory allocation checking when linked to |
|
Used by memusage to help collect information about the memory usage of a program |
|
The network services library |
|
The Name Service Switch libraries, containing functions for resolving host names, user names, group names, aliases, services, protocols, etc. |
|
Contains profiling functions used to track the amount of CPU time spent in specific source code lines |
|
The POSIX threads library |
|
Contains functions for creating, sending, and interpreting packets to the Internet domain name servers |
|
Contains functions providing miscellaneous RPC services |
|
Contains functions providing most of the interfaces specified by the POSIX.1b Realtime Extension |
|
Contains functions useful for building debuggers for multi-threaded programs |
|
Contains code for “standard” functions used in many different Unix utilities |
Now that the final C libraries have been installed, it is time
to adjust the toolchain again. The toolchain will be adjusted
so that it will link any newly compiled program against these
new libraries. This is a similar process used in the
“Adjusting” phase in the
beginning of Chapter
5, but with the adjustments reversed. In Chapter
5, the chain was guided from the host's /{,usr/}lib
directories to the new
/tools/lib
directory. Now, the
chain will be guided from that same /tools/lib
directory to the LFS /{,usr/}lib
directories.
First, backup the /tools
linker,
and replace it with the adjusted linker we made in chapter 5.
We'll also create a link to its counterpart in /tools/$(gcc -dumpmachine)/bin
:
mv -v /tools/bin/{ld,ld-old} mv -v /tools/$(gcc -dumpmachine)/bin/{ld,ld-old} mv -v /tools/bin/{ld-new,ld} ln -sv /tools/bin/ld /tools/$(gcc -dumpmachine)/bin/ld
Next, amend the GCC specs file so that it points to the new dynamic linker. Simply deleting all instances of “/tools” should leave us with the correct path to the dynamic linker. Also adjust the specs file so that GCC knows where to find the correct headers and Glibc start files. A sed command accomplishes this:
gcc -dumpspecs | sed -e 's@/tools@@g' \ -e '/\*startfile_prefix_spec:/{n;s@.*@/usr/lib/ @}' \ -e '/\*cpp:/{n;s@$@ -isystem /usr/include@}' > \ `dirname $(gcc --print-libgcc-file-name)`/specs
It is a good idea to visually inspect the specs file to verify the intended change was actually made.
It is imperative at this point to ensure that the basic functions (compiling and linking) of the adjusted toolchain are working as expected. To do this, perform the following sanity checks:
echo 'main(){}' > dummy.c cc dummy.c -v -Wl,--verbose &> dummy.log readelf -l a.out | grep ': /lib'
If everything is working correctly, there should be no errors, and the output of the last command will be (allowing for platform-specific differences in dynamic linker name):
[Requesting program interpreter: /lib/ld-linux.so.2]
Note that /lib
is now the prefix
of our dynamic linker.
Now make sure that we're setup to use the correct startfiles:
grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log
If everything is working correctly, there should be no errors, and the output of the last command will be:
/usr/lib/crt1.o succeeded
/usr/lib/crti.o succeeded
/usr/lib/crtn.o succeeded
Verify that the compiler is searching for the correct header files:
grep -B1 '^ /usr/include' dummy.log
This command should return successfully with the following output:
#include <...> search starts here:
/usr/include
Next, verify that the new linker is being used with the correct search paths:
grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'
If everything is working correctly, there should be no errors, and the output of the last command (allowing for platform-specific target triplets) will be:
SEARCH_DIR("/tools/i686-pc-linux-gnu/lib")
SEARCH_DIR("/usr/lib")
SEARCH_DIR("/lib");
Next make sure that we're using the correct libc:
grep "/lib.*/libc.so.6 " dummy.log
If everything is working correctly, there should be no errors, and the output of the last command (allowing for a lib64 directory on 64-bit hosts) will be:
attempt to open /lib/libc.so.6 succeeded
Lastly, make sure GCC is using the correct dynamic linker:
grep found dummy.log
If everything is working correctly, there should be no errors, and the output of the last command will be (allowing for platform-specific differences in dynamic linker name and a lib64 directory on 64-bit hosts):
found ld-linux.so.2 at /lib/ld-linux.so.2
If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate and retrace the steps to find out where the problem is and correct it. The most likely reason is that something went wrong with the specs file adjustment. Any issues will need to be resolved before continuing on with the process.
Once everything is working correctly, clean up the test files:
rm -v dummy.c a.out dummy.log
The Zlib package contains compression and decompression routines used by some programs.
First, fix a typo in the package header file:
sed -i 's/ifdef _LARGEFILE64_SOURCE/ifndef _LARGEFILE64_SOURCE/' zlib.h
Prepare Zlib for compilation:
CFLAGS='-mstackrealign -fPIC -O3' ./configure --prefix=/usr
The meaning of the new configure environment variable:
CFLAGS='-mstackrealign -fPIC -O3'
Setting CFLAGS overrides the default optimization in the package to prevent some run time errors. Note that the -mstackrealign may cause build failures in non-Intel architecture systems.
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
The shared library needs to be moved to /lib
, and as a result the .so
file in /usr/lib
will need to be recreated:
mv -v /usr/lib/libz.so.* /lib ln -sfv ../../lib/libz.so.1.2.5 /usr/lib/libz.so
The Binutils package contains a linker, an assembler, and other tools for handling object files.
Verify that the PTYs are working properly inside the chroot environment by performing a simple test:
expect -c "spawn ls"
This command should output the following:
spawn ls
If, instead, the output includes the message below, then the environment is not set up for proper PTY operation. This issue needs to be resolved before running the test suites for Binutils and GCC:
The system has no more ptys.
Ask your system administrator to create more.
Suppress the installation of an outdated standards.info
file as a newer one is
installed later on in the Autoconf instructions:
rm -fv etc/standards.info sed -i.bak '/^INFO/s/standards.info //' etc/Makefile.in
The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build directory:
mkdir -v ../binutils-build cd ../binutils-build
Prepare Binutils for compilation:
../binutils-2.21/configure --prefix=/usr \ --enable-shared
Compile the package:
make tooldir=/usr
The meaning of the make parameter:
tooldir=/usr
Normally, the tooldir (the directory where the
executables will ultimately be located) is set to
$(exec_prefix)/$(target_alias)
. For
example, x86_64 machines would expand that to
/usr/x86_64-unknown-linux-gnu
.
Because this is a custom system, this target-specific
directory in /usr
is not
required. $(exec_prefix)/$(target_alias)
would
be used if the system was used to cross-compile (for
example, compiling a package on an Intel machine that
generates code that can be executed on PowerPC
machines).
The test suite for Binutils in this section is considered critical. Do not skip it under any circumstances.
Test the results:
make check
Install the package:
make tooldir=/usr install
Install the libiberty
header
file that is needed by some packages:
cp -v ../binutils-2.21/include/libiberty.h /usr/include
Translates program addresses to file names and line numbers; given an address and the name of an executable, it uses the debugging information in the executable to determine which source file and line number are associated with the address |
|
Creates, modifies, and extracts from archives |
|
An assembler that assembles the output of gcc into object files |
|
Used by the linker to de-mangle C++ and Java symbols and to keep overloaded functions from clashing |
|
Displays call graph profile data |
|
A linker that combines a number of object and archive files into a single file, relocating their data and tying up symbol references |
|
Lists the symbols occurring in a given object file |
|
Translates one type of object file into another |
|
Displays information about the given object file, with options controlling the particular information to display; the information shown is useful to programmers who are working on the compilation tools |
|
Generates an index of the contents of an archive and stores it in the archive; the index lists all of the symbols defined by archive members that are relocatable object files |
|
Displays information about ELF type binaries |
|
Lists the section sizes and the total size for the given object files |
|
Outputs, for each given file, the sequences of printable characters that are of at least the specified length (defaulting to four); for object files, it prints, by default, only the strings from the initializing and loading sections while for other types of files, it scans the entire file |
|
Discards symbols from object files |
|
Contains routines used by various GNU programs, including getopt, obstack, strerror, strtol, and strtoul |
|
The Binary File Descriptor library |
|
A library for dealing with opcodes—the “readable text” versions of instructions for the processor; it is used for building utilities like objdump. |
The GMP package contains math libraries. These have useful functions for arbitrary precision arithmetic.
If you are building for 32-bit x86, but you have a CPU
which is capable of running 64-bit code and you have specified
CFLAGS
in the environment, the
configure script will attempt to configure for 64-bits and
fail. Avoid this by invoking the configure command below
with
ABI=32
./configure ...
Prepare GMP for compilation:
./configure --prefix=/usr --enable-cxx --enable-mpbsd
The meaning of the new configure options:
--enable-cxx
This parameter enables C++ support
--enable-mpbsd
This builds the Berkeley MP compatibility library
Compile the package:
make
The test suite for GMP in this section is considered critical. Do not skip it under any circumstances.
Test the results:
make check 2>&1 | tee gmp-check-log
Ensure that all 162 tests in the test suite passed. Check the results by issuing the following command:
awk '/tests passed/{total+=$2} ; END{print total}' gmp-check-log
Install the package:
make install
If desired, install the documentation:
mkdir -v /usr/share/doc/gmp-5.0.1 cp -v doc/{isa_abi_headache,configuration} doc/*.html \ /usr/share/doc/gmp-5.0.1
The MPFR package contains functions for multiple precision math.
Prepare MPFR for compilation:
./configure --prefix=/usr --enable-thread-safe \ --docdir=/usr/share/doc/mpfr-3.0.0
Compile the package:
make
The test suite for MPFR in this section is considered critical. Do not skip it under any circumstances.
Test the results and ensure that all tests passed:
make check
Install the package:
make install
Install the documentation:
make html make install-html
The MPC package contains a library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding of the result.
Prepare MPC for compilation:
./configure --prefix=/usr
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.
Apply a sed
substitution that will suppress the installation of
libiberty.a
. The version of
libiberty.a
provided by
Binutils will be used instead:
sed -i 's/install_to_$(INSTALL_DEST) //' libiberty/Makefile.in
As in Section 5.10,
“GCC-4.5.2 - Pass 2”, apply the following
sed to force
the build to use the -fomit-frame-pointer
compiler flag in order
to ensure consistent compiler builds:
case `uname -m` in i?86) sed -i 's/^T_CFLAGS =$/& -fomit-frame-pointer/' \ gcc/Makefile.in ;; esac
The fixincludes script is known to occasionally erroneously attempt to "fix" the system headers installed so far. As the headers up to this point are known to not require fixing, issue the following command to prevent the fixincludes script from running:
sed -i 's@\./fixinc\.sh@-c true@' gcc/Makefile.in
The GCC documentation recommends building GCC outside of the source directory in a dedicated build directory:
mkdir -v ../gcc-build cd ../gcc-build
Prepare GCC for compilation:
../gcc-4.5.2/configure --prefix=/usr \ --libexecdir=/usr/lib --enable-shared \ --enable-threads=posix --enable-__cxa_atexit \ --enable-clocale=gnu --enable-languages=c,c++ \ --disable-multilib --disable-bootstrap --with-system-zlib
Note that for other languages, there are some prerequisites that are not available. See the BLFS Book for instructions on how to build all the GCC supported languages.
The meaning of the new configure option:
--with-system-zlib
This switch tells GCC to link to the system installed copy of the Zlib library, rather than its own internal copy.
Compile the package:
make
In this section, the test suite for GCC is considered critical. Do not skip it under any circumstance.
One set of tests in the GCC test suite is known to exhaust the stack, so increase the stack size prior to running the tests:
ulimit -s 16384
Test the results, but do not stop at errors:
make -k check
To receive a summary of the test suite results, run:
../gcc-4.5.2/contrib/test_summary
For only the summaries, pipe the output through
grep -A7
Summ
.
Results can be compared with those located at http://www.linuxfromscratch.org/lfs/build-logs/6.8/ and http://gcc.gnu.org/ml/gcc-testresults/.
A few unexpected failures cannot always be avoided. The GCC
developers are usually aware of these issues, but have not
resolved them yet. In particular, the libmudflap
tests are known be particularly
problematic as a result of a bug in GCC (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=20003).
Unless the test results are vastly different from those at
the above URL, it is safe to continue.
Install the package:
make install
Some packages expect the C preprocessor to be installed in
the /lib
directory. To support
those packages, create this symlink:
ln -sv ../usr/bin/cpp /lib
Many packages use the name cc to call the C compiler. To satisfy those packages, create a symlink:
ln -sv gcc /usr/bin/cc
Now that our final toolchain is in place, it is important to again ensure that compiling and linking will work as expected. We do this by performing the same sanity checks as we did earlier in the chapter:
echo 'main(){}' > dummy.c cc dummy.c -v -Wl,--verbose &> dummy.log readelf -l a.out | grep ': /lib'
If everything is working correctly, there should be no errors, and the output of the last command will be (allowing for platform-specific differences in dynamic linker name):
[Requesting program interpreter: /lib/ld-linux.so.2]
Now make sure that we're setup to use the correct startfiles:
grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log
If everything is working correctly, there should be no errors, and the output of the last command will be:
/usr/lib/gcc/i686-pc-linux-gnu/4.5.2/../../../crt1.o succeeded
/usr/lib/gcc/i686-pc-linux-gnu/4.5.2/../../../crti.o succeeded
/usr/lib/gcc/i686-pc-linux-gnu/4.5.2/../../../crtn.o succeeded
Depending on your machine architecture, the above may differ
slightly, the difference usually being the name of the
directory after /usr/lib/gcc
.
If your machine is a 64-bit system, you may also see a
directory named lib64
towards
the end of the string. The important thing to look for here
is that gcc has
found all three crt*.o
files
under the /usr/lib
directory.
Verify that the compiler is searching for the correct header files:
grep -B4 '^ /usr/include' dummy.log
This command should return successfully with the following output:
#include <...> search starts here:
/usr/local/include
/usr/lib/gcc/i686-pc-linux-gnu/4.5.2/include
/usr/lib/gcc/i686-pc-linux-gnu/4.5.2/include-fixed
/usr/include
Again, note that the directory named after your target triplet may be different than the above, depending on your architecture.
As of version 4.3.0, GCC now unconditionally installs the
limits.h
file into the
private include-fixed
directory, and that directory is required to be in place.
Next, verify that the new linker is being used with the correct search paths:
grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'
If everything is working correctly, there should be no errors, and the output of the last command (allowing for platform-specific target triplets) will be:
SEARCH_DIR("/usr/i686-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");
A 64-bit system may see a few more directories. For example, here is the output from an x86_64 machine:
SEARCH_DIR("/usr/x86_64-unknown-linux-gnu/lib64")
SEARCH_DIR("/usr/local/lib64")
SEARCH_DIR("/lib64")
SEARCH_DIR("/usr/lib64")
SEARCH_DIR("/usr/x86_64-unknown-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");
Next make sure that we're using the correct libc:
grep "/lib.*/libc.so.6 " dummy.log
If everything is working correctly, there should be no errors, and the output of the last command (allowing for a lib64 directory on 64-bit hosts) will be:
attempt to open /lib/libc.so.6 succeeded
Lastly, make sure GCC is using the correct dynamic linker:
grep found dummy.log
If everything is working correctly, there should be no errors, and the output of the last command will be (allowing for platform-specific differences in dynamic linker name and a lib64 directory on 64-bit hosts):
found ld-linux.so.2 at /lib/ld-linux.so.2
If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate and retrace the steps to find out where the problem is and correct it. The most likely reason is that something went wrong with the specs file adjustment. Any issues will need to be resolved before continuing on with the process.
Once everything is working correctly, clean up the test files:
rm -v dummy.c a.out dummy.log
The C++ compiler |
|
The C compiler |
|
The C preprocessor; it is used by the compiler to expand the #include, #define, and similar statements in the source files |
|
The C++ compiler |
|
The C compiler |
|
A shell script used to help create useful bug reports |
|
A coverage testing tool; it is used to analyze programs to determine where optimizations will have the most effect |
|
Contains run-time support for gcc |
|
This library is linked in to a program when GCC is instructed to enable profiling |
|
GNU implementation of the OpenMP API for multi-platform shared-memory parallel programming in C/C++ and Fortran |
|
Contains routines that support GCC's bounds checking functionality |
|
Contains routines supporting GCC's stack-smashing protection functionality |
|
The standard C++ library |
|
Provides supporting routines for the C++ programming language |
The Sed package contains a stream editor.
Prepare Sed for compilation:
./configure --prefix=/usr --bindir=/bin --htmldir=/usr/share/doc/sed-4.2.1
The meaning of the new configure option:
--htmldir
This sets the directory where the HTML documentation will be installed to.
Compile the package:
make
Generate the HTML documentation:
make html
To test the results, issue:
make check
Install the package:
make install
Install the HTML documentation:
make -C doc install-html
The pkg-config package contains a tool for passing the include path and/or library paths to build tools during the configure and make file execution.
Pkg-Config will use an included version of Popt to parse command line options. If an external version of Popt is desired, install that version using the BLFS Popt build instructions before installing Pkg-config.
Prepare Pkg-config for compilation:
./configure --prefix=/usr
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
The Ncurses package contains libraries for terminal-independent handling of character screens.
Prepare Ncurses for compilation:
./configure --prefix=/usr --with-shared --without-debug --enable-widec
The meaning of the configure option:
--enable-widec
This switch causes wide-character libraries (e.g.,
libncursesw.so.5.7
) to be
built instead of normal ones (e.g., libncurses.so.5.7
). These
wide-character libraries are usable in both multibyte
and traditional 8-bit locales, while normal libraries
work properly only in 8-bit locales. Wide-character and
normal libraries are source-compatible, but not
binary-compatible.
Compile the package:
make
This package has a test suite, but it can only be run after
the package has been installed. The tests reside in the
test/
directory. See the
README
file in that directory
for further details.
Install the package:
make install
Move the shared libraries to the /lib
directory, where they are expected to
reside:
mv -v /usr/lib/libncursesw.so.5* /lib
Because the libraries have been moved, one symlink points to a non-existent file. Recreate it:
ln -sfv ../../lib/libncursesw.so.5 /usr/lib/libncursesw.so
Many applications still expect the linker to be able to find non-wide-character Ncurses libraries. Trick such applications into linking with wide-character libraries by means of symlinks and linker scripts:
for lib in ncurses form panel menu ; do \ rm -vf /usr/lib/lib${lib}.so ; \ echo "INPUT(-l${lib}w)" >/usr/lib/lib${lib}.so ; \ ln -sfv lib${lib}w.a /usr/lib/lib${lib}.a ; \ done ln -sfv libncurses++w.a /usr/lib/libncurses++.a
Finally, make sure that old applications that look for
-lcurses
at build time are
still buildable:
rm -vf /usr/lib/libcursesw.so echo "INPUT(-lncursesw)" >/usr/lib/libcursesw.so ln -sfv libncurses.so /usr/lib/libcurses.so ln -sfv libncursesw.a /usr/lib/libcursesw.a ln -sfv libncurses.a /usr/lib/libcurses.a
If desired, install the Ncurses documentation:
mkdir -v /usr/share/doc/ncurses-5.7 cp -v -R doc/* /usr/share/doc/ncurses-5.7
The instructions above don't create non-wide-character Ncurses libraries since no package installed by compiling from sources would link against them at runtime. If you must have such libraries because of some binary-only application or to be compliant with LSB, build the package again with the following commands:
make distclean ./configure --prefix=/usr --with-shared --without-normal \ --without-debug --without-cxx-binding make sources libs cp -av lib/lib*.so.5* /usr/lib
Converts a termcap description into a terminfo description |
|
Clears the screen, if possible |
|
Compares or prints out terminfo descriptions |
|
Converts a terminfo description into a termcap description |
|
Provides configuration information for ncurses |
|
Reinitializes a terminal to its default values |
|
The terminfo entry-description compiler that translates a terminfo file from source format into the binary format needed for the ncurses library routines. A terminfo file contains information on the capabilities of a certain terminal |
|
Lists all available terminal types, giving the primary name and description for each |
|
Makes the values of terminal-dependent capabilities available to the shell; it can also be used to reset or initialize a terminal or report its long name |
|
Can be used to initialize terminals |
|
A link to |
|
Contains functions to display text in many complex ways on a terminal screen; a good example of the use of these functions is the menu displayed during the kernel's make menuconfig |
|
Contains functions to implement forms |
|
Contains functions to implement menus |
|
Contains functions to implement panels |
The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file systems, consoles, partitions, and messages.
The FHS recommends using the /var/lib/hwclock
directory instead of the
usual /etc
directory as the
location for the adjtime
file.
To make the hwclock program
FHS-compliant, run the following:
sed -e 's@etc/adjtime@var/lib/hwclock/adjtime@g' \ -i $(grep -rl '/etc/adjtime' .) mkdir -pv /var/lib/hwclock
./configure --enable-arch --enable-partx --enable-write
The meaning of the configure options:
--enable-arch
Enables building the arch program
--enable-partx
Enables building the addpart, delpart and partx programs
--enable-write
Enables building the write program
Compile the package:
make
This package does not come with a test suite.
Install the package:
make install
Informs the Linux kernel of new partitions |
|
Opens a tty port, prompts for a login name, and then invokes the login program |
|
Reports the machine's architecture |
|
A command line utility to locate and print block device attributes |
|
Allows users to call block device ioctls from the command line |
|
Displays a simple calendar |
|
Manipulates the partition table of the given device |
|
Finds duplicate executables |
|
Manipulates real-time attributes of a process |
|
Filters out reverse line feeds |
|
Filters nroff output for terminals that lack some capabilities, such as overstriking and half-lines |
|
Filters out the given columns |
|
Formats a given file into multiple columns |
|
Sets the function of the Ctrl+Alt+Del key combination to a hard or a soft reset |
|
Tunes the parameters of the serial line drivers for Cyclades cards |
|
Gives the Discordian date or converts the given Gregorian date to a Discordian one |
|
Asks the Linux kernel to remove a partition |
|
Dumps the kernel boot messages |
|
Preallocates space to a file |
|
Low-level formats a floppy disk |
|
Manipulates the paritition table of the given device |
|
Finds a file system by label or Universally Unique Identifier (UUID) |
|
Is a command line interface to the libmount library for work with mountinfo, fstab and mtab files |
|
Acquires a file lock and then executes a command with the lock held |
|
Is used to check, and optionally repair, file systems |
|
Performs a consistency check on the Cramfs file system on the given device |
|
Performs a consistency check on the Minix file system on the given device |
|
Is a very simple wrapper around FIFREEZE/FITHAW ioctl kernel driver operations |
|
Discards unused blocks on a mounted filesystem |
|
Parses options in the given command line |
|
Dumps the given file in hexadecimal or in another given format |
|
Reads or sets the system's hardware clock, also called the Real-Time Clock (RTC) or Basic Input-Output System (BIOS) clock |
|
A symbolic link to setarch |
|
Gets or sets the io scheduling class and priority for a program |
|
Creates various IPC resources |
|
Removes the given Inter-Process Communication (IPC) resource |
|
Provides IPC status information |
|
Reports the size of an iso9660 file system |
|
Attaches a line discipline to a serial line |
|
Copies a single line |
|
A symbolic link to setarch |
|
A symbolic link to setarch |
|
Enters the given message into the system log |
|
Displays lines that begin with the given string |
|
Sets up and controls loop devices |
|
Lists information about all or selected block devices in a tree-like format. |
|
Prints CPU architechture information |
|
Generates magic cookies (128-bit random hexadecimal numbers) for xauth |
|
Builds a file system on a device (usually a hard disk partition) |
|
Creates a Santa Cruz Operations (SCO) bfs file system |
|
Creates a cramfs file system |
|
Creates a Minix file system |
|
Initializes the given device or file to be used as a swap area |
|
A filter for paging through text one screen at a time |
|
Attaches the file system on the given device to a specified directory in the file-system tree |
|
Shows the symbolic links in the given pathnames |
|
Tells the kernel about the presence and numbering of on-disk partitions |
|
Displays a text file one screen full at a time |
|
Makes the given file system the new root file system of the current process |
|
Reads kernel profiling information |
|
Renames the given files, replacing a given string with another |
|
Alters the priority of running processes |
|
Reverses the lines of a given file |
|
Used to enter a system sleep state until specified wakeup time |
|
Makes a typescript of a terminal session |
|
Plays back typescripts using timing information |
|
Changes reported architecture in a new program environment and sets personality flags |
|
Runs the given program in a new session |
|
Sets terminal attributes |
|
A disk partition table manipulator |
|
Allows to change swaparea UUID and label |
|
Disables devices and files for paging and swapping |
|
Enables devices and files for paging and swapping and lists the devices and files currently in use |
|
Switches to another filesystem as the root of the mount tree |
|
Tracks the growth of a log file. Displays the last 10 lines of a log file, then continues displaying any new entries in the log file as they are created |
|
Retrieves or sets a process' CPU affinity |
|
Tunes the parameters of the line printer |
|
A filter for translating underscores into escape sequences indicating underlining for the terminal in use |
|
Disconnects a file system from the system's file tree |
|
Runs a program with some namespaces unshared from parent |
|
A daemon used by the UUID library to generate time-based UUIDs in a secure and guranteed-unique fashion. |
|
Creates new UUIDs. Each new UUID can reasonably be considered unique among all UUIDs created, on the local system and on other systems, in the past and in the future |
|
Displays the contents of a file or, by default, its standard input, on the terminals of all currently logged in users |
|
Reports the location of the binary, source, and man page for the given command |
|
Wipes a filesystem signature from a device |
|
Sends a message to the given user if that user has not disabled receipt of such messages |
|
Contains routines for device identification and token extraction |
|
Contains routines for generating unique identifiers for objects that may be accessible beyond the local system |
The E2fsprogs package contains the utilities for handling the
ext2
file system. It also
supports the ext3
and
ext4
journaling file systems.
The E2fsprogs documentation recommends that the package be built in a subdirectory of the source tree:
mkdir -v build cd build
Prepare E2fsprogs for compilation:
../configure --prefix=/usr --with-root-prefix="" \ --enable-elf-shlibs --disable-libblkid --disable-libuuid \ --disable-uuidd --disable-fsck
The meaning of the configure options:
--with-root-prefix=""
Certain programs (such as the e2fsck program) are
considered essential programs. When, for example,
/usr
is not mounted,
these programs still need to be available. They belong
in directories like /lib
and /sbin
. If this option
is not passed to E2fsprogs' configure, the programs are
installed into the /usr
directory.
--enable-elf-shlibs
This creates the shared libraries which some programs in this package use.
--disable-*
This prevents E2fsprogs from building and installing
the libuuid
and
libblkid
libraries, the
uuidd
daemon, and the
fsck
wrapper, as Util-Linux installed all of them earlier.
Compile the package:
make
To test the results, issue:
make check
One of the E2fsprogs tests will attempt to allocate 256 MB of memory. If you do not have significantly more RAM than this, it is recommended to enable sufficient swap space for the test. See Section 2.3, “Creating a File System on the Partition” and Section 2.4, “Mounting the New Partition” for details on creating and enabling swap space.
Install the binaries, documentation, and shared libraries:
make install
Install the static libraries and headers:
make install-libs
Make the installed static libraries writable so debugging symbols can be removed later:
chmod -v u+w /usr/lib/{libcom_err,libe2p,libext2fs,libss}.a
This package installs a gzipped .info
file but doesn't update the
system-wide dir
file. Unzip
this file and then update the system dir
file using the following commands.
gunzip -v /usr/share/info/libext2fs.info.gz install-info --dir-file=/usr/share/info/dir \ /usr/share/info/libext2fs.info
If desired, create and install some additional documentation by issuing the following commands:
makeinfo -o doc/com_err.info ../lib/et/com_err.texinfo install -v -m644 doc/com_err.info /usr/share/info install-info --dir-file=/usr/share/info/dir \ /usr/share/info/com_err.info
Searches a device (usually a disk partition) for bad blocks |
|
Changes the attributes of files on an |
|
An error table compiler; it converts a table of
error-code names and messages into a C source file
suitable for use with the |
|
A file system debugger; it can be used to examine
and change the state of an |
|
Prints the super block and blocks group information for the file system present on a given device |
|
Reports free space fragmentation information |
|
Is used to check, and optionally repair
|
|
Is used to save critical |
|
Prints the FS type of a given filesystem, given either a device name or label |
|
Displays or changes the file system label on the
|
|
Replays the undo log undo_log for an ext2/ext3/ext4 filesystem found on a device. This can be used to undo a failed operation by an e2fsprogs program. |
|
Reports on how badly fragmented a particular file might be |
|
By default checks |
|
By default checks |
|
By default checks |
|
By default checks |
|
Saves the output of a command in a log file |
|
Lists the attributes of files on a second extended file system |
|
Converts a table of command names and help messages
into a C source file suitable for use with the
|
|
Creates an |
|
By default creates |
|
By default creates |
|
By default creates |
|
By default creates |
|
Used to create a |
|
Can be used to enlarge or shrink an |
|
Adjusts tunable file system parameters on an
|
|
The common error display routine |
|
Used by dumpe2fs, chattr, and lsattr |
|
Contains routines to enable user-level programs to
manipulate an |
|
Used by debugfs |
The Coreutils package contains utilities for showing and setting the basic system characteristics.
A known issue with the uname program from this
package is that the -p
switch always returns
unknown
. The following
patch fixes this behavior for Intel architectures:
case `uname -m` in i?86 | x86_64) patch -Np1 -i ../coreutils-8.10-uname-1.patch ;; esac
POSIX requires that programs from Coreutils recognize character boundaries correctly even in multibyte locales. The following patch fixes this non-compliance and other internationalization-related bugs:
patch -Np1 -i ../coreutils-8.10-i18n-1.patch
In the past, many bugs were found in this patch. When reporting new bugs to Coreutils maintainers, please check first if they are reproducible without this patch.
Now prepare Coreutils for compilation:
./configure --prefix=/usr \ --enable-no-install-program=kill,uptime
The meaning of the configure options:
--enable-no-install-program=kill,uptime
The purpose of this switch is to prevent Coreutils from installing binaries that will be installed by other packages later.
Compile the package:
make
Skip down to “Install the package” if not running the test suite.
Now the test suite is ready to be run. First, run the tests
that are meant to be run as user root
:
make NON_ROOT_USERNAME=nobody check-root
We're going to run the remainder of the tests as the
nobody
user. Certain tests,
however, require that the user be a member of more than one
group. So that these tests are not skipped we'll add a
temporary group and make the user nobody
a part of it:
echo "dummy:x:1000:nobody" >> /etc/group
Fix some of the permissions so that the non-root user can compile and run the tests:
chown -Rv nobody .
Now run the tests:
su-tools nobody -s /bin/bash -c "make RUN_EXPENSIVE_TESTS=yes check"
Remove the temporary group:
sed -i '/dummy/d' /etc/group
Install the package:
make install
Move programs to the locations specified by the FHS:
mv -v /usr/bin/{cat,chgrp,chmod,chown,cp,date,dd,df,echo} /bin mv -v /usr/bin/{false,ln,ls,mkdir,mknod,mv,pwd,rm} /bin mv -v /usr/bin/{rmdir,stty,sync,true,uname} /bin mv -v /usr/bin/chroot /usr/sbin mv -v /usr/share/man/man1/chroot.1 /usr/share/man/man8/chroot.8 sed -i s/\"1\"/\"8\"/1 /usr/share/man/man8/chroot.8
Some of the scripts in the LFS-Bootscripts package depend on
head,
sleep, and
nice. As
/usr
may not be available
during the early stages of booting, those binaries need to be
on the root partition:
mv -v /usr/bin/{head,sleep,nice} /bin
Encodes and decodes data according to the base64 (RFC 3548) specification |
|
Strips any path and a given suffix from a file name |
|
Concatenates files to standard output |
|
Changes security context for files and directories |
|
Changes the group ownership of files and directories |
|
Changes the permissions of each file to the given mode; the mode can be either a symbolic representation of the changes to make or an octal number representing the new permissions |
|
Changes the user and/or group ownership of files and directories |
|
Runs a command with the specified directory as the
|
|
Prints the Cyclic Redundancy Check (CRC) checksum and the byte counts of each specified file |
|
Compares two sorted files, outputting in three columns the lines that are unique and the lines that are common |
|
Copies files |
|
Splits a given file into several new files, separating them according to given patterns or line numbers and outputting the byte count of each new file |
|
Prints sections of lines, selecting the parts according to given fields or positions |
|
Displays the current time in the given format, or sets the system date |
|
Copies a file using the given block size and count, while optionally performing conversions on it |
|
Reports the amount of disk space available (and used) on all mounted file systems, or only on the file systems holding the selected files |
|
Lists the contents of each given directory (the same as the ls command) |
|
Outputs commands to set the |
|
Strips the non-directory suffix from a file name |
|
Reports the amount of disk space used by the current directory, by each of the given directories (including all subdirectories) or by each of the given files |
|
Displays the given strings |
|
Runs a command in a modified environment |
|
Converts tabs to spaces |
|
Evaluates expressions |
|
Prints the prime factors of all specified integer numbers |
|
Does nothing, unsuccessfully; it always exits with a status code indicating failure |
|
Reformats the paragraphs in the given files |
|
Wraps the lines in the given files |
|
Reports a user's group memberships |
|
Prints the first ten lines (or the given number of lines) of each given file |
|
Reports the numeric identifier (in hexadecimal) of the host |
|
Reports the effective user ID, group ID, and group memberships of the current user or specified user |
|
Copies files while setting their permission modes and, if possible, their owner and group |
|
Joins the lines that have identical join fields from two separate files |
|
Creates a hard link with the given name to a file |
|
Makes hard links or soft (symbolic) links between files |
|
Reports the current user's login name |
|
Lists the contents of each given directory |
|
Reports or checks Message Digest 5 (MD5) checksums |
|
Creates directories with the given names |
|
Creates First-In, First-Outs (FIFOs), a “named pipe” in UNIX parlance, with the given names |
|
Creates device nodes with the given names; a device node is a character special file, a block special file, or a FIFO |
|
Creates temporary files in a secure manner; it is used in scripts |
|
Moves or renames files or directories |
|
Runs a program with modified scheduling priority |
|
Numbers the lines from the given files |
|
Runs a command immune to hangups, with its output redirected to a log file |
|
Prints the number of processing units available to a process |
|
Dumps files in octal and other formats |
|
Merges the given files, joining sequentially corresponding lines side by side, separated by tab characters |
|
Checks if file names are valid or portable |
|
Is a lightweight finger client; it reports some information about the given users |
|
Paginates and columnates files for printing |
|
Prints the environment |
|
Prints the given arguments according to the given format, much like the C printf function |
|
Produces a permuted index from the contents of the given files, with each keyword in its context |
|
Reports the name of the current working directory |
|
Reports the value of the given symbolic link |
|
Removes files or directories |
|
Removes directories if they are empty |
|
Runs a command with specified security context |
|
Prints a sequence of numbers within a given range and with a given increment |
|
Prints or checks 160-bit Secure Hash Algorithm 1 (SHA1) checksums |
|
Prints or checks 224-bit Secure Hash Algorithm checksums |
|
Prints or checks 256-bit Secure Hash Algorithm checksums |
|
Prints or checks 384-bit Secure Hash Algorithm checksums |
|
Prints or checks 512-bit Secure Hash Algorithm checksums |
|
Overwrites the given files repeatedly with complex patterns, making it difficult to recover the data |
|
Shuffles lines of text |
|
Pauses for the given amount of time |
|
Sorts the lines from the given files |
|
Splits the given file into pieces, by size or by number of lines |
|
Displays file or filesystem status |
|
Runs commands with altered buffering operations for its standard streams |
|
Sets or reports terminal line settings |
|
Prints checksum and block counts for each given file |
|
Flushes file system buffers; it forces changed blocks to disk and updates the super block |
|
Concatenates the given files in reverse |
|
Prints the last ten lines (or the given number of lines) of each given file |
|
Reads from standard input while writing both to standard output and to the given files |
|
Compares values and checks file types |
|
Runs a command with a time limit |
|
Changes file timestamps, setting the access and modification times of the given files to the current time; files that do not exist are created with zero length |
|
Translates, squeezes, and deletes the given characters from standard input |
|
Does nothing, successfully; it always exits with a status code indicating success |
|
Shrinks or expands a file to the specified size |
|
Performs a topological sort; it writes a completely ordered list according to the partial ordering in a given file |
|
Reports the file name of the terminal connected to standard input |
|
Reports system information |
|
Converts spaces to tabs |
|
Discards all but one of successive identical lines |
|
Removes the given file |
|
Reports the names of the users currently logged on |
|
Is the same as ls -l |
|
Reports the number of lines, words, and bytes for each given file, as well as a total line when more than one file is given |
|
Reports who is logged on |
|
Reports the user name associated with the current effective user ID |
|
Repeatedly outputs “y” or a given string until killed |
|
Library used by stdbuf |
The Iana-Etc package provides data for network services and protocols.
The following command converts the raw data provided by IANA
into the correct formats for the /etc/protocols
and /etc/services
data files:
make
This package does not come with a test suite.
Install the package:
make install
The M4 package contains a macro processor.
Prepare M4 for compilation:
./configure --prefix=/usr
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
copies the given files while expanding the macros that they contain. These macros are either built-in or user-defined and can take any number of arguments. Besides performing macro expansion, m4 has built-in functions for including named files, running Unix commands, performing integer arithmetic, manipulating text, recursion, etc. The m4 program can be used either as a front-end to a compiler or as a macro processor in its own right. |
The Bison package contains a parser generator.
Prepare Bison for compilation:
./configure --prefix=/usr
The configure system causes Bison to be built without support for internationalization of error messages if a bison program is not already in $PATH. The following addition will correct this:
echo '#define YYENABLE_NLS 1' >> lib/config.h
Compile the package:
make
To test the results (about 0.5 SBU), issue:
make check
Install the package:
make install
Generates, from a series of rules, a program for analyzing the structure of text files; Bison is a replacement for Yacc (Yet Another Compiler Compiler) |
|
A wrapper for bison, meant for
programs that still call yacc instead of
bison; it calls
bison
with the |
|
The Yacc library containing implementations of
Yacc-compatible |
The Procps package contains programs for monitoring processes.
Apply a patch to prevent an error message from being displayed when determining the kernel clock tick rate:
patch -Np1 -i ../procps-3.2.8-fix_HZ_errors-1.patch
Apply a patch to fix a unicode related issue in the watch program:
patch -Np1 -i ../procps-3.2.8-watch_unicode-1.patch
Fix a bug in the Makefile, which prevents procps from building with make-3.82:
sed -i -e 's@\*/module.mk@proc/module.mk ps/module.mk@' Makefile
Compile the package:
make
This package does not come with a test suite.
Install the package:
make install
Reports the amount of free and used memory (both physical and swap memory) in the system |
|
Sends signals to processes |
|
Looks up processes based on their name and other attributes |
|
Signals processes based on their name and other attributes |
|
Reports the memory map of the given process |
|
Lists the current running processes |
|
Reports the current working directory of a process |
|
Sends signals to processes matching the given criteria |
|
Displays detailed kernel slap cache information in real time |
|
Changes the scheduling priority of processes matching the given criteria |
|
Modifies kernel parameters at run time |
|
Prints a graph of the current system load average |
|
Displays a list of the most CPU intensive processes; it provides an ongoing look at processor activity in real time |
|
Reports how long the system has been running, how many users are logged on, and the system load averages |
|
Reports virtual memory statistics, giving information about processes, memory, paging, block Input/Output (IO), traps, and CPU activity |
|
Shows which users are currently logged on, where, and since when |
|
Runs a given command repeatedly, displaying the first screen-full of its output; this allows a user to watch the output change over time |
|
Contains the functions used by most programs in this package |
The Grep package contains programs for searching through files.
Prepare Grep for compilation:
./configure --prefix=/usr \ --bindir=/bin
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
The Readline package is a set of libraries that offers command-line editing and history capabilities.
Reinstalling Readline will cause the old libraries to be moved to <libraryname>.old. While this is normally not a problem, in some cases it can trigger a linking bug in ldconfig. This can be avoided by issuing the following two seds:
sed -i '/MV.*old/d' Makefile.in sed -i '/{OLDSUFF}/c:' support/shlib-install
Prepare Readline for compilation:
./configure --prefix=/usr --libdir=/lib
Compile the package:
make SHLIB_LIBS=-lncurses
The meaning of the make option:
SHLIB_LIBS=-lncurses
This option forces Readline to link against the
libncurses
(really,
libncursesw
) library.
This package does not come with a test suite.
Install the package:
make install
Now move the static libraries to a more appropriate location:
mv -v /lib/lib{readline,history}.a /usr/lib
Next, remove the .so
files in
/lib
and relink them into
/usr/lib
:
rm -v /lib/lib{readline,history}.so ln -sfv ../../lib/libreadline.so.6 /usr/lib/libreadline.so ln -sfv ../../lib/libhistory.so.6 /usr/lib/libhistory.so
If desired, install the documentation:
mkdir -v /usr/share/doc/readline-6.2 install -v -m644 doc/*.{ps,pdf,html,dvi} \ /usr/share/doc/readline-6.2
The Bash package contains the Bourne-Again SHell.
Prepare Bash for compilation:
./configure --prefix=/usr --bindir=/bin \ --htmldir=/usr/share/doc/bash-4.2 --without-bash-malloc \ --with-installed-readline
The meaning of the configure options:
--htmldir
This option designates the directory into which HTML formatted documentation will be installed.
--with-installed-readline
This option tells Bash to use the readline
library that is already
installed on the system rather than using its own
readline version.
Compile the package:
make
Skip down to “Install the package” if not running the test suite.
To prepare the tests, ensure that the nobody
user can write to the sources
tree:
chown -Rv nobody .
Now, run the tests as the nobody
user:
su-tools nobody -s /bin/bash -c "make tests"
Install the package:
make install
Run the newly compiled bash program (replacing the one that is currently being executed):
exec /bin/bash --login +h
The parameters used make the bash process an interactive login shell and continue to disable hashing so that new programs are found as they become available.
A widely-used command interpreter; it performs many types of expansions and substitutions on a given command line before executing it, thus making this interpreter a powerful tool |
|
A shell script to help the user compose and mail standard formatted bug reports concerning bash |
|
A symlink to the bash program; when invoked as sh, bash tries to mimic the startup behavior of historical versions of sh as closely as possible, while conforming to the POSIX standard as well |
The Libtool package contains the GNU generic library support script. It wraps the complexity of using shared libraries in a consistent, portable interface.
Prepare Libtool for compilation:
./configure --prefix=/usr
Compile the package:
make
To test the results (about 3.0 SBU), issue:
make check
Install the package:
make install
The GDBM package contains the GNU Database Manager. This is a disk file format database which stores key/data-pairs in single files. The actual data of any record being stored is indexed by a unique key, which can be retrieved in less time than if it was stored in a text file.
Prepare GDBM for compilation:
./configure --prefix=/usr
Compile the package:
make
This package does not come with a test suite.
Install the package:
make install
In addition, install the DBM and NDBM compatibility headers, as some packages outside of LFS may look for these older dbm routines:
make install-compat
Fix a minor installation issue by manually adding GDBM to the info table of contents:
install-info --dir-file=/usr/info/dir /usr/info/gdbm.info
The Inetutils package contains programs for basic networking.
./configure --prefix=/usr --libexecdir=/usr/sbin \ --localstatedir=/var --disable-ifconfig \ --disable-logger --disable-syslogd --disable-whois \ --disable-servers
The meaning of the configure options:
--disable-ifconfig
This option prevents Inetutils from installing the ifconfig program, which can be used to configure network interfaces. LFS uses ip from IPRoute2 to perform this task.
--disable-logger
This option prevents Inetutils from installing the logger program, which is used by scripts to pass messages to the System Log Daemon. Do not install it because Util-linux installed a version earlier.
--disable-syslogd
This option prevents Inetutils from installing the System Log Daemon, which is installed with the Sysklogd package.
--disable-whois
This option disables the building of the Inetutils whois client, which is out of date. Instructions for a better whois client are in the BLFS book.
--disable-servers
This disables the installation of the various network servers included as part of the Inetutils package. These servers are deemed not appropriate in a basic LFS system. Some are insecure by nature and are only considered safe on trusted networks. More information can be found at http://www.linuxfromscratch.org/blfs/view/svn/basicnet/inetutils.html. Note that better replacements are available for many of these servers.
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install make -C doc html make -C doc install-html docdir=/usr/share/doc/inetutils-1.8
Move some programs to their FHS-compliant place:
mv -v /usr/bin/{hostname,ping,ping6} /bin mv -v /usr/bin/traceroute /sbin
Is the file transfer protocol program |
|
Reports or sets the name of the host |
|
Sends echo-request packets and reports how long the replies take |
|
A version of ping for IPv6 networks |
|
Performs remote file copy |
|
executes commands on a remote host |
|
Performs remote login |
|
Runs a remote shell |
|
Is used to chat with another user |
|
An interface to the TELNET protocol |
|
A trivial file transfer program |
|
Traces the route your packets take from the host you are working on to another host on a network, showing all the intermediate hops (gateways) along the way |
The Perl package contains the Practical Extraction and Report Language.
First create a basic /etc/hosts
file to be referenced in one of Perl's configuration files as
well as the optional test suite:
echo "127.0.0.1 localhost $(hostname)" > /etc/hosts
This version of Perl now builds the Compress::Raw::Zlib module. By default Perl will use an internal copy of the Zlib source for the build. Issue the following command so that Perl will use the Zlib library installed on the system:
sed -i -e "s|BUILD_ZLIB\s*= True|BUILD_ZLIB = False|" \ -e "s|INCLUDE\s*= ./zlib-src|INCLUDE = /usr/include|" \ -e "s|LIB\s*= ./zlib-src|LIB = /usr/lib|" \ cpan/Compress-Raw-Zlib/config.in
To have full control over the way Perl is set up, you can remove the “-des” options from the following command and hand-pick the way this package is built. Alternatively, use the command exactly as below to use the defaults that Perl auto-detects:
sh Configure -des -Dprefix=/usr \ -Dvendorprefix=/usr \ -Dman1dir=/usr/share/man/man1 \ -Dman3dir=/usr/share/man/man3 \ -Dpager="/usr/bin/less -isR" \ -Duseshrplib
The meaning of the configure options:
-Dvendorprefix=/usr
This ensures perl knows how to tell packages where they should install their perl modules.
-Dpager="/usr/bin/less
-isR"
This corrects an error in the way that perldoc invokes the less program.
-Dman1dir=/usr/share/man/man1
-Dman3dir=/usr/share/man/man3
Since Groff is not installed yet, Configure thinks that we do not want man pages for Perl. Issuing these parameters overrides this decision.
-Duseshrplib
Build a shared libperl needed by some perl modules.
Compile the package:
make
To test the results (approximately 2.5 SBU), issue:
make test
Install the package:
make install
Translates awk to Perl |
|
Dumps C structures as generated from cc -g -S |
|
Queries or changes configuration of Perl modules |
|
A commandline frontend to Module::CoreList |
|
Interact with the Comprehensive Perl Archive Network (CPAN) from the command line |
|
The CPANPLUS distribution creator |
|
The CPANPLUS launcher |
|
Perl script that is used to enable flushing of the output buffer after each write in spawned processes |
|
Displays Perl profile data |
|
Builds a Perl extension for the Encode module from either Unicode Character Mappings or Tcl Encoding Files |
|
Translates find commands to Perl |
|
Converts |
|
Converts |
|
Shell script for examining installed Perl modules, and can even create a tarball from an installed module |
|
Can be used to configure the |
|
Combines some of the best features of C, sed, awk and sh into a single swiss-army language |
|
A hard link to perl |
|
Used to generate bug reports about Perl, or the modules that come with it, and mail them |
|
Displays a piece of documentation in pod format that is embedded in the Perl installation tree or in a Perl script |
|
The Perl Installation Verification Procedure; it can be used to verify that Perl and its libraries have been installed correctly |
|
Used to generate thank you messages to mail to the Perl developers |
|
A Perl version of the character encoding converter iconv |
|
A rough tool for converting Perl4 |
|
Converts files from pod format to HTML format |
|
Converts files from pod format to LaTeX format |
|
Converts pod data to formatted *roff input |
|
Converts pod data to formatted ASCII text |
|
Prints usage messages from embedded pod docs in files |
|
Checks the syntax of pod format documentation files |
|
Displays selected sections of pod documentation |
|
Command line tool for running tests against the Test::Harness module. |
|
A Perl version of the stream editor sed |
|
Dumps C structures as generated from cc -g -S stabs |
|
A tar-like program written in Perl |
|
A Perl program that compares an extracted archive with an unextracted one |
|
Translates sed scripts to Perl |
|
Prints or checks SHA checksums |
|
Is used to force verbose warning diagnostics in Perl |
|
Converts Perl XS code into C code |
The Autoconf package contains programs for producing shell scripts that can automatically configure source code.
Prepare Autoconf for compilation:
./configure --prefix=/usr
Compile the package:
make
To test the results, issue:
make check
This takes a long time, about 4.7 SBUs. In addition, 6 tests are skipped that use Automake. For full test coverage, Autoconf can be re-tested after Automake has been installed.
Install the package:
make install
Produces shell scripts that automatically configure software source code packages to adapt to many kinds of Unix-like systems. The configuration scripts it produces are independent—running them does not require the autoconf program. |
|
A tool for creating template files of C #define statements for configure to use |
|
A wrapper for the M4 macro processor |
|
Automatically runs autoconf, autoheader, aclocal, automake, gettextize, and libtoolize in the correct order to save time when changes are made to autoconf and automake template files |
|
Helps to create a |
|
Modifies a |
|
Helps when writing |
The Automake package contains programs for generating Makefiles for use with Autoconf.
Prepare Automake for compilation:
./configure --prefix=/usr --docdir=/usr/share/doc/automake-1.11.1
Compile the package:
make
To test the results, issue:
make check
This takes a long time, about 10 SBUs.
Install the package:
make install
A script that installs aclocal-style M4 files |
|
Generates |
|
A hard link to aclocal |
|
A tool for automatically generating |
|
A hard link to automake |
|
A wrapper for compilers |
|
A script that attempts to guess the canonical triplet for the given build, host, or target architecture |
|
A configuration validation subroutine script |
|
A script for compiling a program so that dependency information is generated in addition to the desired output |
|
Byte-compiles Emacs Lisp code |
|
A script that installs a program, script, or data file |
|
A script that prints the modification time of a file or directory |
|
A script acting as a common stub for missing GNU programs during an installation |
|
A script that creates a directory tree |
|
Compiles a Python program |
|
A script to create a symlink tree of a directory tree |
|
A wrapper for lex and yacc |
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2 yields a much better compression percentage than with the traditional gzip.
Apply a patch that will install the documentation for this package:
patch -Np1 -i ../bzip2-1.0.6-install_docs-1.patch
The following command ensures installation of symbolic links are relative:
sed -i 's@\(ln -s -f \)$(PREFIX)/bin/@\1@' Makefile
Prepare Bzip2 for compilation with:
make -f Makefile-libbz2_so make clean
The meaning of the make parameter:
-f
Makefile-libbz2_so
This will cause Bzip2 to be built using a different
Makefile
file, in this
case the Makefile-libbz2_so
file, which
creates a dynamic libbz2.so
library and links the Bzip2
utilities against it.
Compile and test the package:
make
Install the programs:
make PREFIX=/usr install
Install the shared bzip2 binary into the
/bin
directory, make some
necessary symbolic links, and clean up:
cp -v bzip2-shared /bin/bzip2 cp -av libbz2.so* /lib ln -sv ../../lib/libbz2.so.1.0 /usr/lib/libbz2.so rm -v /usr/bin/{bunzip2,bzcat,bzip2} ln -sv bzip2 /bin/bunzip2 ln -sv bzip2 /bin/bzcat
Decompresses bzipped files |
|
Decompresses to standard output |
|
Runs cmp on bzipped files |
|
Runs diff on bzipped files |
|
Runs egrep on bzipped files |
|
Runs fgrep on bzipped files |
|
Runs grep on bzipped files |
|
Compresses files using the Burrows-Wheeler block sorting text compression algorithm with Huffman coding; the compression rate is better than that achieved by more conventional compressors using “Lempel-Ziv” algorithms, like gzip |
|
Tries to recover data from damaged bzipped files |
|
Runs less on bzipped files |
|
Runs more on bzipped files |
|
The library implementing lossless, block-sorting data compression, using the Burrows-Wheeler algorithm |
The Diffutils package contains programs that show the differences between files or directories.
Prepare Diffutils for compilation:
./configure --prefix=/usr
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
The Gawk package contains programs for manipulating text files.
Prepare Gawk for compilation:
./configure --prefix=/usr --libexecdir=/usr/lib
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
If desired, install the documentation:
mkdir -v /usr/share/doc/gawk-3.1.8 cp -v doc/{awkforai.txt,*.{eps,pdf,jpg}} \ /usr/share/doc/gawk-3.1.8
The File package contains a utility for determining the type of a given file or files.
Prepare File for compilation:
./configure --prefix=/usr
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
The Findutils package contains programs to find files. These programs are provided to recursively search through a directory tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable if the database has not been recently updated).
Prepare Findutils for compilation:
./configure --prefix=/usr --libexecdir=/usr/lib/findutils \ --localstatedir=/var/lib/locate
The meaning of the configure options:
--localstatedir
This option changes the location of the locate database to be
in /var/lib/locate
, which
is FHS-compliant.
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
Some of the scripts in the LFS-Bootscripts package depend on
find. As
/usr
may not be available
during the early stages of booting, this program needs to be
on the root partition. The updatedb script also needs
to be modified to correct an explicit path:
mv -v /usr/bin/find /bin sed -i 's/find:=${BINDIR}/find:=\/bin/' /usr/bin/updatedb
Was formerly used to produce locate databases |
|
Was formerly used to produce locate databases; it is the ancestor of frcode. |
|
Searches given directory trees for files matching the specified criteria |
|
Is called by updatedb to compress the list of file names; it uses front-compression, reducing the database size by a factor of four to five. |
|
Searches through a database of file names and reports the names that contain a given string or match a given pattern |
|
Older version of find, using a different algorithm |
|
Updates the locate database; it scans the entire file system (including other file systems that are currently mounted, unless told not to) and puts every file name it finds into the database |
|
Can be used to apply a given command to a list of files |
The Flex package contains a utility for generating programs that recognize patterns in text.
Apply a patch that fixes a bug in the C++ scanner generator, that causes scanner compilation to fail when using GCC-4.5.2:
patch -Np1 -i ../flex-2.5.35-gcc44-1.patch
Prepare Flex for compilation:
./configure --prefix=/usr
Compile the package:
make
To test the results (about 0.5 SBU), issue:
make check
Install the package:
make install
There are some packages that expect to find the lex
library in /usr/lib
. Create a symlink to account for
this:
ln -sv libfl.a /usr/lib/libl.a
A few programs do not know about flex yet and try to run its
predecessor, lex. To support those
programs, create a wrapper script named lex
that calls flex
in lex emulation mode:
cat > /usr/bin/lex << "EOF"
#!/bin/sh
# Begin /usr/bin/lex
exec /usr/bin/flex -l "$@"
# End /usr/bin/lex
EOF
chmod -v 755 /usr/bin/lex
If desired, install the flex.pdf
documentation file:
mkdir -v /usr/share/doc/flex-2.5.35 cp -v doc/flex.pdf \ /usr/share/doc/flex-2.5.35
The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled with NLS (Native Language Support), enabling them to output messages in the user's native language.
Prepare Gettext for compilation:
./configure --prefix=/usr \ --docdir=/usr/share/doc/gettext-0.18.1.1
Compile the package:
make
To test the results (this takes a long time, around 3 SBUs), issue:
make check
Install the package:
make install
Copies standard Gettext infrastructure files into a source package |
|
Outputs a system-dependent table of character encoding aliases |
|
Outputs a system-dependent set of variables, describing how to set the runtime search path of shared libraries in an executable |
|
Substitutes environment variables in shell format strings |
|
Translates a natural language message into the user's language by looking up the translation in a message catalog |
|
Primarily serves as a shell function library for gettext |
|
Copies all standard Gettext files into the given top-level directory of a package to begin internationalizing it |
|
Displays a network hostname in various forms |
|
Filters the messages of a translation catalog according to their attributes and manipulates the attributes |
|
Concatenates and merges the given |
|
Compares two |
|
Finds the messages that are common to to the given
|
|
Converts a translation catalog to a different character encoding |
|
Creates an English translation catalog |
|
Applies a command to all translations of a translation catalog |
|
Applies a filter to all translations of a translation catalog |
|
Generates a binary message catalog from a translation catalog |
|
Extracts all messages of a translation catalog that match a given pattern or belong to some given source files |
|
Creates a new |
|
Combines two raw translations into a single file |
|
Decompiles a binary message catalog into raw translation text |
|
Unifies duplicate translations in a translation catalog |
|
Displays native language translations of a textual message whose grammatical form depends on a number |
|
Recodes Serbian text from Cyrillic to Latin script |
|
Extracts the translatable message lines from the given source files to make the first translation template |
|
defines the autosprintf class, which makes C formatted output routines usable in C++ programs, for use with the <string> strings and the <iostream> streams |
|
a private library containing common routines used by the various Gettext programs; these are not intended for general use |
|
Used to write specialized programs that process
|
|
A private library containing common routines used by the various Gettext programs; these are not intended for general use |
|
A library, intended to be used by LD_PRELOAD that
assists |
The Groff package contains programs for processing and formatting text.
Groff expects the environment variable PAGE
to contain the default paper size. For
users in the United States, PAGE=letter
is appropriate.
Elsewhere, PAGE=A4
may be more suitable. While the default paper size is
configured during compilation, it can be overridden later by
echoing either “A4” or
“letter” to the
/etc/papersize
file.
Prepare Groff for compilation:
PAGE=<paper_size>
./configure --prefix=/usr
Compile the package:
make
This package does not come with a test suite.
Install the package:
make install
Some documentation programs, such as xman, will not work properly without the following symlinks:
ln -sv eqn /usr/bin/geqn ln -sv tbl /usr/bin/gtbl
Reads a troff font file and adds some additional font-metric information that is used by the groff system |
|
Creates a font file for use with groff and grops |
|
Groff preprocessor for producing chemical structure diagrams |
|
Compiles descriptions of equations embedded within troff input files into commands that are understood by troff |
|
Converts a troff EQN (equation) into a cropped image |
|
Marks differences between groff/nroff/troff files |
|
A link to eqn |
|
Converts a grap diagram into a cropped bitmap image |
|
A groff preprocessor for gremlin files |
|
A driver for groff that produces TeX dvi format |
|
A front-end to the groff document formatting system; normally, it runs the troff program and a post-processor appropriate for the selected device |
|
Displays groff files and man pages on X and tty terminals |
|
Reads files and guesses which of the groff options
|
|
Is a groff driver for Canon CAPSL printers (LBP-4 and LBP-8 series laser printers) |
|
Is a driver for groff that produces output in PCL5 format suitable for an HP LaserJet 4 printer |
|
Translates the output of GNU troff to PostScript |
|
Translates the output of GNU troff into a form suitable for typewriter-like devices |
|
A link to tbl |
|
Creates a font file for use with groff -Tlj4 from an HP-tagged font metric file |
|
Creates an inverted index for the bibliographic databases with a specified file for use with refer, lookbib, and lkbib |
|
Searches bibliographic databases for references that contain specified keys and reports any references found |
|
Prints a prompt on the standard error (unless the standard input is not a terminal), reads a line containing a set of keywords from the standard input, searches the bibliographic databases in a specified file for references containing those keywords, prints any references found on the standard output, and repeats this process until the end of input |
|
A simple preprocessor for groff |
|
Formats equations for American Standard Code for Information Interchange (ASCII) output |
|
A script that emulates the nroff command using groff |
|
Creates pdf documents using groff |
|
Translates a PostScript font in |
|
Compiles descriptions of pictures embedded within troff or TeX input files into commands understood by TeX or troff |
|
Converts a PIC diagram into a cropped image |
|
Translates the output of GNU troff to HTML |
|
Converts encoding of input files to something GNU troff understands |
|
Translates the output of GNU troff to HTML |
|
Copies the contents of a file to the standard output, except that lines between .[ and .] are interpreted as citations, and lines between .R1 and .R2 are interpreted as commands for how citations are to be processed |
|
Transforms roff files into DVI format |
|
Transforms roff files into HTML format |
|
Transforms roff files into PDFs |
|
Transforms roff files into ps files |
|
Transforms roff files into text files |
|
Transforms roff files into other formats |
|
Reads files and replaces lines of the form .so file by the contents of the mentioned file |
|
Compiles descriptions of tables embedded within troff input files into commands that are understood by troff |
|
Creates a font file for use with groff -Tdvi |
|
Is highly compatible with Unix troff; it should usually be invoked using the groff command, which will also run preprocessors and post-processors in the appropriate order and with the appropriate options |
The GRUB package contains the GRand Unified Bootloader.
Prepare GRUB for compilation:
./configure --prefix=/usr \ --sysconfdir=/etc \ --disable-grub-emu-usb \ --disable-grub-fstest \ --disable-efiemu
The --disable switches minimize what is built by disabling features and testing programs not really needed for LFS.
Compile the package:
make
This package does not come with a test suite.
Install the package:
make install
Using GRUB to make your LFS system bootable will be discussed in Section 8.4, “Using GRUB to Set Up the Boot Process”.
Converts a binary file to a C header |
|
A tool to edit the environment block |
|
Install GRUB on your drive |
|
Generate a grub config file |
|
Generate a device map file automatically |
|
Make a bootable image of GRUB |
|
Make a bootable image of GRUB |
|
Creates a bootable ISO image |
|
Generates an encrypted PBKDF2 password for use in the boot menu |
|
Makes a system pathname relative to its root |
|
Make a bootable image of GRUB suitable for a floppy disk or CDROM/DVD |
|
Probe device information for a given path or device |
|
Sets the default boot entry for GRUB for the next boot only |
|
Checks GRUB configuration script for syntax errors |
|
Sets the default boot entry for GRUB |
|
Set up images to boot from a device |
The Gzip package contains programs for compressing and decompressing files.
Prepare Gzip for compilation:
./configure --prefix=/usr --bindir=/bin
Compile the package:
make
To test the results, issue:
make check
Install the package:
make install
Move some programs that do not need to be on the root filesystem:
mv -v /bin/{gzexe,uncompress,zcmp,zdiff,zegrep} /usr/bin mv -v /bin/{zfgrep,zforce,zgrep,zless,zmore,znew} /usr/bin
Decompresses gzipped files |
|
Creates self-decompressing executable files |
|
Compresses the given files using Lempel-Ziv (LZ77) coding |
|
Decompresses compressed files |
|
Decompresses the given gzipped files to standard output |
|
Runs cmp on gzipped files |
|
Runs diff on gzipped files |
|
Runs egrep on gzipped files |
|
Runs fgrep on gzipped files |
|
Forces a |
|
Runs grep on gzipped files |
|
Runs less on gzipped files |
|
Runs more on gzipped files |
|
Re-compresses files from compress format
to gzip
format— |